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The global and local conditions of uniqueness and the criteria excluding a possibility of bifurcation of the 
equilibrium state for small strains are derived. The conditions and criteria are derived analyzing the problem of 
uniqueness of solution of the basic incremental boundary problem of coupled generalized thermo-elasto-
plasticity. This paper is a continuation of some previous works by the author, but contains new derivation of the 
global and local criteria excluding a possibility of bifurcation of the equilibrium state for a comparison body 
dependent on statically admissible fields of stress velocity. All the thermal elastoplastic coupling effects, non-
associated laws of plastic flow and influence of plastic strains on thermoplastic properties of a body were taken 
into account in this work. Thus, the mathematical problem considered here is not a self-conjugated problem. The 
paper contains four Appendices A, B, C and D where the local necessery and sufficient conditions of uniqueness 
have been derived.  
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1. Introduction  
 

 The incremental boundary-value problem of generalized coupled thermoplasticity will be 
formulated. This will be followed by an interpretation of the uniqueness conditions for the solution of that 
problem. The necessary uniqueness conditions will be derived as well as the sufficient local condition, the 
sufficient global uniqueness condition and the sufficient global criterion precluding state of the bifurcation. 
A similar incremental boundary problem of coupled generalized thermoplasticity has been previously 
investigated and discussed in (Śloderbach, [1], [2], [3]). In this paper, necessary and sufficient conditions of 
uniqueness of solution of formulated incremental boundary-value problem of coupled generalized 
thermoplasticty for the case of small gradients of displacements (small strains) are derived. The global 
conditions and local conditions of uniqueness are derived. The uniqueness conditions for the generalized 
coupled thermoplastic body and suitable comparison bodies (Mróz and Raniecki, [4], [5]; Raniecki, [6]; 
Śloderbach, [1], [3], [7]) were derived. The derived global and local uniqueness conditions are suitable 
necessary and sufficient conditions excluding the occurrence of the bifurcation state of equilibrium in 
coupled generalized thermoplasticity and also in isothermal loading processes. We prove that the local 
uniqueness conditions for the generalized thermo-elastoplastic body and the comparison bodies are same, but 
the methods of calculating the bifurcation state (using the global sufficient uniqueness condition) for the case 
of comparison bodies are less complicated (there exists a linear dependence between the stress rate and strain 
rate), see (Mróz and Raniecki, [4], [5]; Raniecki, [6]; Śloderbach, [1], [3], [7]). Thus, introduction of such 
comparison bodies seems to be advisable. The global uniqueness conditions for generalized coupled elastic-
plastic solids and the global criteria excluding bifurcation for comparison bodies are different. This work is a 
continuation of the work (Śloderbach, [8]), devoted to the coupling effects in generalized thermo-elasto-
plasticity for the case of small deformations. 
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 In a generalized case, the constitutive equations of coupled thermoplasticity are non-associated laws 
of plastic flow, even if Gyarmati’s (Gyarmati, [9]) postulate is assumed (see Śloderbach, [1], [3], [7], [8]). 
They also include the effects of thermomechanical coupling effects and take into account the elastic-plastic 
conjugation. It means that they can be applied for the description of not only metallic bodies, but porous 
materials, sintered powders, rocks and soils, as well. The paper also presents some special cases of the global 
and local conditions of uniqueness for more specific models of bodies. In such less general models, 
constitutive functions occurring under conditions of uniqueness take simpler forms.  

 The derived conditions of uniqueness seem to be important from both mathematical and practical 
point of view. They are a device for the estimation of critical loads. If the critical loads are exceeded, 
bifurcation of the equilibrium state is possible. In comparison to the previous papers about the uniqueness of 
solution and bifurcation of equilibrium states (Śloderbach, [1], [3], [7]; Mróz and Raniecki, [4], [5]; 
Raniecki, [6];), this paper presents a derived new comparison body dependent on statically admissible fields 
of stress rate. For such a body a sufficient local and global uniqueness conditions were derived, developing 
problems discussed in the above mentioned papers. Derived sufficient local and global uniqueness conditions 
are simultaneously local and global criteria excluding the appearance of the bifurcation state. The uniqueness 
conditions and bifurcation criteria derived in Śloderbach [1], [3], Mróz and Raniecki [4], [5] Raniecki, [6] 
were related to the comparison body depending on kinematically admissible fields of strain rate.  

 In order to analyze uniqueness of the boundary problem solution, it is assumed that a thermodynamic 
state of the body in a certain moment of the body plastic deformation is known. However, it is necessary to 
determine velocity fields of strain and displacement as well as temperatures for the input values of stress and 
divergence of a vector of the flux of heat exchanged by the surface through the elementary area [see the 
problems b1 and b2 considered in this paper and in Śloderbach [1], [3], [7].  

Papers on non-isothermal thermo-elasto plasticity and isothermal elasto-plasticity with associated and 
non-associated laws of plastic flow in the range of large displacements have been published in recent twenty 
years, (see e.g. Armero and Simo J.C. [10]; Benall and Bigoni, [11]; Bertram, [12]; Candija and Brnic, [13]; 
Casey, [14]; Epstein and Maugin, [15]; Hakansson et al., [16]; Huttel and Matzenmiller, [17]; Itskov, [18]; 
Lehmann, [19]; Mahnken and Stein, [20]; Marakin and Sokolova, [21]; Maugin and Epstein,, [22]; Meyers et 
al., [23]; Miehe, [24]; Srinivasa, [25]; Xiao et al. [26]; Nguyen, [27]; Śloderbach and Pajak, [28], [29]; 
Śloderbach, [7], [8], [30]). The constitutive equations and plasticity conditions for isotropic and anisotropic 
materials were analyzed in these papers; the methods of numerical calculations were also used. In some 
works, (e.g. Bertram, [12]; Candija and Brnic, [13]; Casey, [14]; Epstein and Maugin, [15]; Hakansson et al., 
[16]; Huttel and Matzenmiller, [17]; Itskov, [18]; Mahnken and Stein, [20]; Marakin and Sokolova, [21]; 
Maugin, [31]; Maugin and Epstein, [22]; Meyers et al. [23]; Simo and Miehe, [32]; Miehe, [24]; Srinivasa, 
[25]; Xiao et al. [26]) the problems of description of large thermo and elasto-plastic deformations and taking 
appropriate measures for deformations, additivity of elastic and plastic deformations and problems related to 
actual and relative configurations were considered. In papers (Mahnken and Stein, [20]; Meyers et al., [23]) 
the topics of linear and non-linear kinematic and isotropic reinforcement were analyzed. Also the problems 
of stability and behaviour under thermo-mechanical and mechanical stresses, (see e.g. Benall and Bigoni, 
[11]; Candija and Brnic, [13]; Epstein and Maugin, [15]; Lehmann, [19]; Marakin and Sokolova, [21]; Simo 
and Miehe, [32]; Srinivasa, [25]) were analyzed. The majority of the papers describing large deformations in 
thermo-elastoplasticity use the method of inner parameters in the frame of thermodynamics of non-reversible 
processes.  

 In this part of the paper the incremental boundary problem of coupled geneneralized thermo-elasto-
plasticity has been being formulated. Next, conditions of uniqueness of solution of the formulated 
incremental boundary problem have been interpreted. The required conditions of uniqueness of the problem 
solution have been derived. Next, a sufficient local condition and global sufficient conditions of uniqueness 
of the problem solution have been formulated for a body model of the generalized thermo-elasto-plasticity, 
and for comparative bodies dependent on kinetically acceptable fields of plastic strains and statically 
acceptable stress velocity fields (Śloderbach, [1], [3], [7]; Raniecki, [33]; Raniecki and Bruhns, [34]). From 
the physical point of view the conditions of uniqueness are understood as proper criteria eliminating the 
occurrence of bifurcation of the equilibrium state. Similar incremental boundary problems of the coupled 
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thermo-elasto-plasticity for small and large deformations were tested and discussed in papers, (see e.g. 
Nguyen, [27]; Raniecki, [6], [33]; Śloderbach, [1], [3], [7]; Śloderbach and Pajak, [28], [29]). This paper 
uses the data from them. An original element consists in the assumption of non-associated laws of plastic 
flow and including the influence of plastic strains on thermoelastic properties of bodies and derivation of a 
reference body dependent on statically acceptable stress velocity fields. Such a requirement leads to a more 
difficult problem than those previously considered.  

 The paper (see section 5) contains four Appendices A, B, C and D where the local necessery and 
sufficient condition of uniqueness of solution of the formulated incremental boundary-value problem of 
coupled generalized thermoplasticty for the case of small gradients of displacements (small strains) has been 
derived. This condition is a local criterion excluding bifurcation of the equilibrium state for the derived 
comparison body dependent on statically admissible fields of stress velocity. It has been shown that the local 
sufficient condition of uniqueness for the comparison body, resulting from the requirement of positive 
integrand denoted as I’ and J’, is the same as that for the integrand I and J for the generalized coupled 
thermoplastic body (Śloderbach, [1], [3], [7], [30]). It is a certain criterion proving that the introduction of 
the reference body and the integrands I’ and J’ – being the lower majorant of the expression for the 
generalized thermoplastic body – seems to be advisable. 

 In Appendix A, necessary conditions of uniqueness of the solution have been derived for the 
formulated problems expressed as b1 and b2 (see sec. 2). This appendix contains also conditions of 
invertibility of constitutive equations expressed in velocities of stresses and strains.  

 Appendix B presents a procedure of the proof of the theorem concerning the local sufficient 
condition of uniqueness formulated in subsection 4.1. The presented proof is a mathematical indirect proof. 
Investigating a positive definition of the integrand expressed as I (see subpoint 4.2.3), the author derived the 
mentioned sufficient local condition of uniqueness. 

 Appendix B presents also a procedure of obtaining the optimum (minimal) condition of uniqueness 
from the derived one-parameter family of local conditions of uniqueness for the derived comparison body 
dependent on statically admissible fields of stress velocity. Conditions of uniqueness and estimations of 
bifurcation states in the theory of plasticity for the case of large strains with associated and non-associated 
laws of plastic flow, depending on kinematically admissible fields of strain velocity were analyzed in 
Śloderbach [1], [3], [7], [30], Raniecki [6], Raniecki and Bruhns [34]. 

In Appendices C and D, it has been shown that sufficient local conditions of uniqueness result from 
the requirement of positive definitions of integrands for reference bodies, defined as J’ and I’ (see subpoints 
4.2.2 and 4.2.3). Those conditions are the same as those for the generalized thermo-elastic-plastic body 
defined by the functions J and I. This mathematical fact is also a certain criterion proving that an 
introduction of such integrand expressions J’ and I’, being some certain majorants of integrand expressions J 
and I for thermo-elastic-plastic bodies, makes sense.  

 
2. Uniqueness solution of incremental problems for homogenous processes  
 

 A homogeneous physical body of unit mass is being considered. When the thermodynamic state of 
each particle of the body is the same at any moment of the process, the process  is called homogeneous. In 
the case of such processes, the quantity divq occurring in the equations for temperature should be understood 
as the rate of global heat exchange between the physical body and the environment, and 0 as a reverse of the 
total volume of the body.  

 Let us assume that the local thermodynamic state is described by the following parameters of state 
(Raniecki,[6]; Śloderbach, [1], [2], [7], [8] [30]):  

e – tensor of elastic strain, s – specific entropy (per unit mass), 
(M) – the set of symmetric internal tensor parameters of second order (M = 1, …,n),  
 = T, that is ij = ji, (N) – the set of internal scalar parameters (N = 1,…,m). 
 Now the symbol K will denote the set of internal parameters in the form of a vector of pair K  

{(M),(N)}, (M = 1,…n) and (N = 1,…,m). 
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 The systems of constitutive thermo-elasto-plastic equations composed of the equation for the 
temperature and the relation between the rates of elastic strain, elastic stress and temperature, have the 
following form (Śloderbach, [8]) 
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where particular types of thermodynamic, thermomechanical and mechanical (elastic-plastic) couplings are 

denoted by a Greek letter  with a suitable subscript and superscript I and i , (see Śloderbach, [1], [2], [8]). 

The symbol 0 stands for dissipation heat which is not a thermostatic thermal effect. 
 Let us assume that the thermodynamic state of the body at a certain moment t0 of a homogenous 

process is known and such that the condition F1 = F = 0 is satisfied. The following incremental problems can 
be formulated for such type of processes. Satysfying the set of field and constitutive equations of, we must 
find, for the time t0, for the problems (a1, a2, b1 and b2) the values  

 
 a1.  and 0q  assuming that    and0 0t T t  are prescribed, 

 
 a2.  and 0q  assuming that    and0 0t T t  are prescribed, 

 

 b1.  and T  assuming that    and0 0 0t q t  are prescribed, 

 

 b2.  and T  assuming that    and0 0 0t q t  are prescribed 

 
where q0 = -divq . 

 It is easy to see that if a solution of the problems (a1) and (a2) is to be unique, it is necessary that the 
following respective conditions known from the isothermal theory of plasticity should be satisfied (Raniecki, 
[6], [33]; Śloderbach, [1], [3], [7], [30]; Śloderbach and Pajak [28]) 

 
h  0      and       h + gp: MF >0, (2.3) 

 
where   gp = F1, + 9 Z b , (2.4) 

h - is the isothermal strain-hardening function, 
F




F 
 and ,

1
1

F



F  
, 

b - is the function describing evolution of internal parameters   (Śloderbach, [1], [2], [8], [30]).  
For the problems (a1) and (a2), conditions (2.3) are also sufficient. However, two solutions of the 

problems (b1) and (b2) may exist, even if the inequalities (2.3) are satisfied. The necessary uniqueness 
conditions for the problems (b1) and (b2) have the following forms (cf. Apendix A).  

 
Problem b1 

 
  h1 = h  mFT  >0. (2.5) 
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Problem b2 
 

H = h + gp: MF  
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 In the case of associated laws of plastic flow (F1, = F) the quantity (m = m) was analysed in (Mróz 

and Raniecki, [4], [5]; Śloderbach, [1], [3], [7], [30]; Śloderbach and Pajak, [28]) when all the elastic-plastic 
coupling effects being rejected ( )9 9 10 10 11 11 12 12 0                . By analysing the cyclic 
isothermal process in the space of stresses, the autor of those work observed that for the majority of materials 
(in particular for metallic materials) m is in general positive 

 
m > 0. (2.9) 
 

 The inequalities (2.5) and (2.6) are a generalization of the uniqueness conditions derived by Mróz 
and Raniecki [4], [5], Raniecki, [6], Raniecki and Sawczuk, [35], [36]. This generalization consists in the 
non-associated laws of plastic flow being taken into account as well as the influence of plastic deformations 
on the thermoelastic properties of the body. The conditions obtained in the mentioned above papers can also 
be obtained from Eqs (3.3) and (3.4) by rejecting all the effects of elastic-plastic coupling  
( )9 9 10 10 11 11 12 12 0                 and assuming associated laws of plastic flow (F1,=F). 

 Condition (2.6) should be understood as a limitation for the functions occurring in the group of 
constitutive equations. If (H = 0), then from the theory of thermo-elasto-plasticity it results that an 
instantaneous change of stresses and temperature is possible when  the body element is not being deformed (
 0 ) and it does not exchange heat with the environment (q0 = 0). It means theoretically the possibility that 

if (H = 0 and  0 , q0 = 0, then and 0 0 T   ). However, such phenomena do not take place in real 
physical bodies.  

 If (h1 = 0), then in an adiabatic process (q0 = 0) the body behaves similarly as the perfectly plastic 
body (no hardening), i.e., temporary adiabatic flow (  0 ) is possible under constant stresses  . 0  Such 

a phenomenon can occur in the range of large deformations, so we assume that constitutive functions satisfy 
condition (2.5).  

 It is worthwhile to observe that in the case of metallic materials the satisfaction of condition (2.5) 
implies, in general, satisfaction of condition (2.6) [cf. (Mróz and Raniecki [4], [5]; Śloderbach [1], [3], [7], 
[30]; Śloderbach and Pajak [28])]. 

 Let us assume that conditions (2.5) and (2.6) are both satisfied. The solutions of the incremental 
problems (b1) and (b2) can be expressed in the following forms 

 

Problem b1 
 

 , 9T 1 4 4
1 1

j j
qF b m q
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where      , 9 71 4 Tb m F           K F Z F   , (2.11)1 
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 The symbol La denotes the tensor of adiabatic elasticity. Let us observe that the second right-hand 

term of Eq.(2.10)1 is not equal to the plastic strain rate, but may be considered as representing the adiabatic 
plastic strain rate. The tensor K  is asymmetric, ijmn mnijK K . A lack of symmetry is caused by not only 

thermal expansion accompanying power dissipation of the plastic strain and a change of the yield point 
together with an increase of temperature resulting from the piezoelectric effect, but also effects of elastic-
plastic coupling and the assumption of non-associated laws of plastic flow. It makes difficult a proof of the 
theorem concerning the uniqueness of solution of the incremental problem in the case of heterogeneous 
processes and in a consequence, the formulation of suitable criteria of bifurcation. The equations for the 
thermodynamic flow rate can also be expressed in terms of   and q , They have the form 
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 Taking into considerations the Gyarmati postulate (Gyarmati, [9]) and the resulting condition (cf. 

Śloderbach, [1], [3], [7], [30]) relation (2.13) takes the form 
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Problem b2 

 
The alternative constitutive equations corresponding to equations, (cf. Śloderbach, [1], [3], [7], [30]) 

have the forms 
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 The following additional quantities are involved in the tensor K  
 

  ,5 6 T 6 10 3 5 1
m

F b F
p p p



               Ν : ,  (2.17) 

 

 ,10 12 1, 10 12 1b F b F           ZN N N N ,  (2.18) 

 

where   ,1
F

F 





. 

 

 The symbol aM  denotes the tensor of adiabatic moduli of elasticity. Similarly to the former case, 
the tensor interrelating the stress rate and strain rate is asymmetric because ijmn mnijK K  . 

 Let us observe that, if conditions (2.5) and (2.6) are both satisfied, Eqs (2.15) are equivalent Eqs 
(2.10). They can be obtained by solving Eq.(2.10)1 for   and substituting the result into Eqs (2.10)2 and 
(2.10)3. Equations (2.10) can be obtained by solving Eq.(2.15)1 for   and substituting the result into Eqs 
(2.15)2 and (2.15)3. Thus, conditions (2.5) and (2.6) are often called conditions of reciprocal inversability of 
constitutive equations in relation to and .    

 If all the thermodynamic coupling effects in Eqs (2.10) - (2.14) and (2.15) - (2.16) are rejected 

 1 3 6 7 9 10 12 0               and if  ,1  F F , those equations will constitute two equivalent 

sets of fundamental equations of the theory of thermal stresses in an elastic-plastic body. Then ( q T  ) or (

div 0c T   q )and (p = 1). 
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3. Formulation of the incremental boundary value problem 
 

 If condition (2.5) is satisfied, the set of Eqs (2.10) - (2.14) is equivalent to the fundamental set of Eqs 
(2.15) - (2.16) together with the relevant evolution equations of internal parameters K , when H > 0. The set 
of those equations, together with the law of heat conduction, with the equation of motion and the kinematic 
relations  
 

div 0 m 0   b v        and      i,jj,iij vv2   (3.1)  

 
where v   is the vector of velocity of particles, bm  is the body force, constitute a set of fundamental field 
equations of generalized coupled thermo-elasic-plasticity. Together with the boundary conditions and the 
initial conditions it may be used as a basis for the analysis of many problems of generalized coupled thermo-
elasic-plasticity, both dynamic and static (cf. Śloderbach, [1], [2], [7], [30]).  

 The following static incremental boundary-value problems can be formulated (cf. Raniecki, [6]; 
Raniecki and Sawczuk, [36]; Śloderbach, [1], [3], [7], [30]). 

 Let the body occupy, at a time t0, a region D in space. Let us denote by D  the closure of D and by 
the symbol S – the boundary of D . S is the closure of the sum of non-intersecting regular open surfaces Sv 
and St. Let the thermodynamic state of the body  

 
T, , K ,  (3.2)  

 
and the rate of body forces mb  be known, at a time t0 and at every point x of the closure D . It is assumed 

that the functions (3.2) satisfy the condition F   0. It is also assumed that the values of the surface forces 0t  
and the velocities of material points v0 are known at time t0 over the parts Sv and St of the boundary, that is  
 

  

for ,

for ,

0 t

0 v

S

S

 


  

n t x

v v x


 (3.3)  

 
where n  is a unit vector normal to S, directed towards the outside of D. Our task is to find the set of 
functions  , , v   defined in D  and the function T  defined in D, which satisfy, in the region D, Eqs (2.3), 

(2.6), (3.1), the expression div
0

1
q

c



q  and the incremental equations of equlibrium  

 
div 0 m 0  b . (3.4)  

 
 Let us observe that, knowing the functions (3.2), we can determine q at every point of the region D, 

directly from the  ,q T
KT Y q  , where T = gradT and  ,T

KY T K , by differentiating T and q with 

respect to the coordinate variables xi, where i = 1, 2, 3. 
 In the coupled generalized thermo-elasto-plasticity the formulated incremental boundary problem 

plays the same role as a suitable boundary incremental problem in the isothermal theory of plasticity. 
Namely, if its solution is ambiguous, then a solution of a general problem, where the history of variation of 
surface forces, velocity and temperature on the surface of the body under consideration are given, is 
ambiguous, too (Raniecki,[6]; Śloderbach, [1], [3], [7], [30]). 
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4. Discussion of uniqueness conditions 
 
 Tests of uniqueness of the solution of the incremental boundary problem presented in Section 3 

belong to the most important problems shown in this paper. Such tests and the results obtained can be the 
basis for the formulation of two criteria allowing the estimation of the critical thermodynamic state after 
exceeding of which bifurcation of the equilibrium state is possible. These criteria are also two sufficient 
conditions of the uniqueness of solution of the incremental boundary problem, called local sufficient 
condition and global sufficient condition.  

 The local condition can be easily applied in practice because it is directly expressed by constitutive 
functions and material constants. However, it gives less accurate estimations of the critical state. The global 
condition gives better estimations of critical states but its application is more difficult because it requires 
searching kinematically acceptable velocity fields for which the functional J (see subsection 4.4) reaches 
zero. Derivation of both conditions uses methods presented in the previous papers (Mróz and Raniecki, [4], 
[5]; Raniecki, [6], [33]; Raniecki and Bruhns, [34]; Śloderbach, [1], [3], [7], [30]). 

 
4.1. Local uniqueness condition 
 

 The following theorem is proved in Appendix B of the paper. 
 

Theorem 1. 
 

 If the inequality 
 

  1 T 1
1

h h m F h
2




       
a a ag M g F M F g M F: : :    (4.1)  

 
where 
 

 ,1 9 4F b m     g Z        and       7 TF   F F   , (4.2)  

 
is satisfied at every point of the plastic portion of the body Dp = x: F = 0, there can exist only one set of 

functions  , , T   of class C1 at least, which is a solution of the incremental boundary value problem of 

generalized coupled thermoplasticity, which was formulated in section 3. 
 Inequality (4.1) is the sufficient local uniqueness condition. Each thermodynamic state, for which 

condition (4.1) is satisfied, is secure against bifurcation. Since in the course of a deformation process of the 

body the value of the strain-hardening function (the modulus) decreases, in general, therefore the value of 1h  
may be treated as an upper estimation of the unknown critical value h corresponding to the critical state. 

 Some particular cases of expression (4.1) have already been mentioned in the literature (Śloderbach, 
[1], [7], [30]; Śloderbach and Pajak, [28]). A similar condition was obtained by Mróz in Mróz [37], [38] and 
Hueckel and Maier [39], [40] in their analysis of the stability of material defined as a condition of half the 
product of the stress rate tensor and the strain rate tensor being positive. Their study was confined to the case 
of the isothermal theory of plasticity (with no thermo-mechanical couplings), the elastic plastic coupling 
effects and non-associated laws of plastic flow being preserved. An expression of this type was also obtained 
in Raniecki [6], [33], Raniecki and Bruhns [34], Śloderbach [1], [3], [7], [30], Śloderbach and Pajak, [28] for 
the case of isothermal uncoupled and non-isothermal coupled theory of thermoplasticity with a non-
associated law of plastic flow. 
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4.2. The global uniqueness condition  
 
4.2.1.  Global condition for a thermo-elasto-plastic body dependent on kinematically admissible strain 

rates fields  
 

 Let us assume that there exist two sets of functions  , , ,T v   and  , , ,T   v   which are 

solutions of the incremental boundary-value problem of generalized coupled thermoplasticity, which was 
formulated in section 3. Then, the following equality must be satisfied 

 

   
D

dV 0          :     (4.3)  

 

due to the fact that both solutions satisfy the same boundary conditions (2.5), in the case of Gauss  
Ostrogradski theorem. 

 Let us denote by J the integrand in expression (4.3), which depends on ( and    ), for an elastic-
plastic body, as follows 

 

     , , ,1 1J j j      
      :        (4.4)  

 

where         and         and  1 1j j   and  1 1j j    are defined by Eqs (2.16)1,2. Functions 

and *j j  take the value 1 – for the active plastic deformation, or 0 – for the elastic loading or plastic 
unloading, see Eqs (2.16)1,2 and Śloderbach [1], [3], [7], [30].  

 The quantities ( and    ) and ( and     ) are interrelated by Eq.(2.15)1, which can be rewritten in a 
more compact form as follows  

 

 
1

1
1 1 1 1 1

j
Z

H
      M M d g F d  : -    (4.5)  

where  

  

  , and ,

, , ,

1 1

a
1 5 1 1 T 1q qF H H.

        




     

Zg M g M N B F M F B

d M M Z

  



 (4.6)  

 

Since expression (4.3) with zero at the right side provides existence of two sets of functions 

 , , ,T v   and  , , ,T   v  , which are a solution of the formulated incremental boundary problem, so 

positivity of expression (4.3), i.e., 0   (Raniecki, [6], [33]; Raniecki and Bruhns, [34]; Raniecki and 
Sawczuk, [36]; Śloderbach, [1], [3], [7], [30]; Śloderbach and Pajak, [28]) and Eq.(4.4) will be a condition 

excluding the occurrence of the bifurcation state. Inequality 0  , is a sufficient global condition of 
uniqueness and a global criterion excluding the occurrence of the bifurcation state.  

 
4.2.2.  Global condition for a comparison body dependent on kinematically admissible strain velocity fields  
 

 Let us introduce the following function J’, depending on ( and    )  
 

   ' ,
2

2
1 2

1
J x

4x H
         M g F    : :      (4.7)  
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where x2 - is a scalar quantity. 
 The expression J’ is a comparison body function and represents a one-parameter family of 

expressions of J’, with respect to the parameter x2. 
 The idea of reference body in coupled thermoplasticity was introduced in the papers by Mróz and 

Raniecki [4], [5], Raniecki [6], [33], Raniecki and Brunhs [34] and also in the author’s papers (Śloderbach, 
[1], [3], [7], [30]; Śloderbach and Pajak, [28]). 

 The functions J and J depend in addition to the variables ( and    ) on the thermodynamic state of 
the body (2.5). As it results from a comparison of expression (4.7) and (4.4), it presents a certain linear 
dependence between  and   . Differentiating J   in relation to   we obtain a linear dependence 

between and   , which does not occur in expression (4.4), because these dependences are nonlinear.  
 

Lemma 1 
 
 It will be shown that if the same thermodynamic state is prescribed for J and J  , then for each pair  

( and    ) the following inequality holds 
 

   , , , ' ,1 1J j j J 0          . (4.8) 

 
 The proof of lemma 1 is given in the works of the author (Śloderbach, [1], [3], [7], [30]). 
 Using expression (4.3), inequalitie (4.8) we can formulate the following sufficient condition of 

uniqueness of a solution of the incremental boundary problem for the comparison body which is a stronger 
(safer) criterion excluding the occurrence of the bifurcation state.  

 
Theorem 2 
 

 Let us now formulate a sufficient global uniqueness criterion (that is a criterion which excludes 
bifurcation). Let H >0 at every point x Dp, in this part, where plastic deformations are occurring, i.e., where 
Dp = x: F = 0. If for every non-zero kinematically admissible and integrable velocity field v, which 
vanishes over the part Sv of the surface, the inequality  

 

   
p

1 2

D D

J dV J dV 0   v v ,  (4.9)  

 

is satisfied, there exists only one pair  , T  constituting a solution of the incremental boundary-value 

problem in generalized coupled thermoplasticity. This criterion can easily be demonstrated. 
 
Proof 
 

 The integrands in Eqs (4.9) are 
 

 1 1J   M  :          and          2
2 2

1
J x

4x H
     g F :  . (4.10)  

 
 The validity of the sufficient global uniqueness criterion (4.9), being a safer criterion excluding the 

state of bifurcation, follows directly from the inequalities 0   and Eq.(4.8), see comments in Śloderbach 
[1], [3], [7], [30]. 
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 The integral condition (4.9) is, in particular form, of essential practical importance. If, for a 
prescribed state {T, , K} it is impossible to find such a field v that the sum of integrals at the left-hand side 
of the expression (4.9) is zero, we are assured that this state is secure against bifurcation. 

 The idea of deriving such a criterion for the incremental boundary-value problem for coupled 
thermoplasticity in the case of associated laws of plastic flow and for small deformations has been derived by 
Mróz and Raniecki [4], [5], Raniecki [6], and for the case of non-associated laws of plastic flow by 
Śloderbach [1], [3], [7], [30] and for large deformations by Raniecki [33], Raniecki and Bruhns [34] 
Śloderbach and Pająk [28]. Another sufficient global uniqueness criterion for incremental problems of 
isothermal plasticity of elastic-plastic bodies with non-associated laws of plastic flow has been given by 
Huecel and Maier [39], [40], Maier [41].  

 It will be shown in Appendix C that the sufficient local uniqueness condition following from the 
requirement that the intergrand J’ should be definite positive is the same as for a generalized thermo-elastic-
plastic body Eqs (2.12)2 and (2.15)1 or (4.5) provided that the parameter x2 takes its optimum form 

 

  

1

2
2
0x

 

 

 
   
 

1

1

g L g

F L F

:

: 

. (4.11)  

 

 A procedure for obtaining the optimum parameter 2
0x  is also discussed in Appendix C. 

 For the parameter 2
0x  the sufficient local uniqueness condition becomes the optimum (strongest) 

condition for the entire one-parameter family of sufficient uniqueness conditions.  
 

4.2.3. Global condition for a thermo-elastic-plastic body depending on statically admissible stress rate fields  
 

Now, let the symbol I mean the integrand from expression (4.3) dependent on ( and    ) for a 
thermo-elastic-plastic body in the following way  

 

     , *, , * *I j j           :        (4.12)  

 
where   *       ,       * *           and         *jjjj    *and . 

 
Like in subsection 4.2.1, functions and *j j  take the value 1 – for the active plastic deformation, or 

0 – for the elastic loading or plastic unloading, see (Śloderbach, [7], [30]).  
At present * and *   are connected with a suitable constitutive equation, see (Raniecki, [6]; 

Śloderbach, [1], [3], [7], [30]; Śloderbach and Pajak, [28]) written as 
 

1 1 1
1

j
z

h
     L g F d      (4.13)  

where 

 , 9 , ,

, , .

1 4 1 4

1 1 1

b m q        




   
a a

T

g F Ζ d

Z qF L L M M

  γ

 (4.14)  

 

Like in the case of kinematically admissible strain velocity field, expression (4.3) with the sign zero 

at the right side allows the existence of two sets of functions  , , ,T v   and  , , ,T   v  , being a 
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solution of the formulated incremental boundary-value problem. Thus, the positive definition of expression 

(4.3) is a condition excluding the occurrence of the bifurcation state, i.e., 0   (Raniecki, [6], [33]; 
Raniecki and Bruhns, [34]; Śloderbach, [1], [3], [7], [30]; Śloderbach and Pajak, [28]). The positive 
definition of expression (4.12) is a result of the positive definition of (4.9), too. In this case, inequality (4.9) 
is a sufficient global condition of uniqueness of solution of the incremental boundary problem for a reference 
body and a global criterion excluding the occurrence of the bifurcation state for a case of kinematically 
admissible stress velocity fields, see comments in Śloderbach [1], [3], [7], [30].  

 
4.2.4. Global condition for a comparison body dependent on statically admissible stress rate fields  

 
The function I’ dependent on *and    is introduced in the following way  

 

   ' , *
2

2
1 2

1

1
I y

4 y h
       L g F    : :     , (4.15)  

 
where y2  is a scalar parameter.  

The above expression expresses a one-parameter series of expressions I’ related to the parameter y2. 
The functions I and I’ depend not only on independent variables and *   , but on the thermodynamic state 
as well (3.2).  

In coupled generalized thermo-elasto-plasticity, an idea of the reference body dependent on statically 
acceptable stress velocity fields was introduced in the author’s papers (Śloderbach, [7], [30]; Śloderbach and 
Pajak, [28], [29]). As in the case of kinematically admissible strain velocity fields, from a comparison of 
expression (4.15) with (4.12) it appears that it is a certain linear dependence between  and   . 

Differentiating I   in relation to   we obtain a certain linear dependence between and    , which 
does not occur in expression (4.17), because in Eq. (4.12) those dependences are not linear. 

 
Lemma 2 
 

Let us demonstrate that under a given thermodynamic state, the same for I and I’, the following 
inequality is true for each pair  and *    and each combination  j and j* 

 

   , *, , * ' , *, , *I j j I j j 0        . (4.16)  
 

The proof of lemma 2 is given in (Śloderbach, [7], [30]). 

Using the inequality 0  , see expression (4.3), and inequalities (4.16) we can formulate (like in 
the 4.2.2) the following sufficient condition of uniqueness of a solution of the incremenral boundary problem 
for the reference body dependent on statically admissible stress velocity fields, which is a safer criterion 
excluding the occurrence of the bifurcation state.  

 
Theorem 3 
 

Let us assume h1  0 at each point of the body x  DP in its part where plastic deformations take 
place, i.e., where DP = {x: F = 0}. If for each statically admissible stress velocity field   (or the field of 
stress velocity difference  ), which disappears on a surface part (a body boundary) St, the following 
inequality is satisfied  

 

   ' - '

P

1 2

D D

I dV I dV 0    , (4.17)  
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then only one pair  , T  being a solution of the incremental boundary problem of coupled generalized 

thermoplasticity can exist. It is easy to prove that the above introduced criterion is true, like in the case of 
kinematically acceptable strain velocity fields. 
 

Proof 
 

Integrands occurring in expression (4.26) have the following form  
 

 1 1I'  L  :         and        2
2

2 2
1

1
I' y

4y h
    g F :  . (4.18)  

 
Truth of the above condition of uniqueness for a reference body being a safer criterion excluding 

bifurcation results directly from satisfying the inequality 0  , see expression (4.3) and inequalitie (4.16), 
see comments in Śloderbach, [7], [30], Śloderbach and Pajak [28]. 

Integral condition (4.17) presented in this form is very important from a practical point of view. 
Namely, if for a given thermodynamical state {T, , K} it is not possible to find such statically admissible stress 
velocity field  , for which a sum of integrals occurring at the left side of the expression is equal to zero, then we 
must be sure that such a state is safe from the point of view of possibility of bifurcation state occurrence.  

In Appendix D it is shown that the sufficient local condition of uniqueness resulting from the 
requirement of a positively defined integrand I’ is the same as for the case of a thermo-elastic-plastic body 
(2.10)1 and (4.13) when the parameter  y2 takes the following optimum form  

 
1

2
2
0y

 
   
 

1

1

g M g

F M F

:

: 

. (4.19)  

 

For the parameter 2
0y  the local condition of uniqueness  becomes the optimum (safest) condition 

from all the sets of conditions.  
Now we can state that in the case of the comparison body expressed by Eqs (4.7), (4.10) or as  J1 

(4.8)1 dependent on kinematically admissible strain velocity fields at the boundary transition  * g F and 

(x2 = 1), we obtain a body of coupled generalized thermoplasticity deteremined by Eq.(4.5). From 
expressions (4.15) or (4.18) for the reference body dependent on statically acceptable stress velocity fields it 
appears that substituting at the boundary ( g F ) and the value (y2 = 1) we obtain the expression like for 
the thermoelastic body. Thus, reference bodies are not obtained by their mutual inversion like in the case of a 
thermo-elastic-plastic bodies. They are independently derived so as to satisfy inequalities (4.8), (4.9) for a 
reference body dependent on kinematically acceptable strain fields and inequalities (4.16), (4.17) for the 
reference body dependent on statically acceptable stress velocity fields, respectively.  

 
5. Appendices  
 
5.1. Appendix A 

 
The procedure of derivation of necessary conditions of uniqueness (2.5) and (2.6) for the problems b1 

and b2 (see section 2) is similar as that from papers (Śloderbach, [1], [2], [30]; Raniecki, [4], [5]; Raniecki 
and Bruhns, [6]). 
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1. To derive the condition H > 0 (problem b2) let us assume first that for prescribed values of the 

strain rate   and divq the plastic loading process is active  p  0 , and let us denote by ( ) ( )andp pT   the 

corresponding values of and T  . Then, a set of algebraic equations can be obtained by substituting the 

expression on ( e p      ), (2.2)2 , (2.15)1 and (2.15)2, into association condition and Eq.(2.2)1. After 
transformation we can obtain  

 

   

 

( ) ( )
5

( ) ( )
6

,

,

p p
T p

p p

F T h

1 q
T m

p p p


       


        


MF g MF F M

MF M

 

 

: : :

: : -

  



 

  

 (A.1) 

where  

 3 6 10 , div
0

1
m m b q

c 


       


N q: , (A.2) 

 

and   m =  
 T

K
0 3

0

Y1
b T b

c Τ





  
          
   

F:  . 

 
The set of algebraic Eqs (A.1) has a unique solution in the form 

 

 
  

      

5
1

,

,

p

T

p
6 6

H F F q
p

1 h
HT m q

p p






      




        


M MF M

MF F M M

 

  

: - : :

: : :

 

 

   

   

 (A.3) 

 

where  ph h   g MF:  , 
 

provided that the condition .H 0  Now it will be assumed that unloading takes place for the prescribed 

values of   and divq and  p 0 . Let us denote by ( ) ( )ande eT   the relevant values for that process.  

 

 

 

( )

( )

,

.

e
6

e
6

1
T q

p

q
p

    


      


M

M M M

 

 

:

:

 

    

 (A.4) 

 

Making use of (A.3), we can establish the following relation between  ( ) ee
TL F T F :   and ( )p  

as 
 

( ) ( ) .p eH L   (A.5) 
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In agreement with the unloading criterion assumed, which is that of the expression of ( )eL  being 
negative, we have the relation (sign (p) = sign L

(e)), which ensures the existence and uniqueness of  . Then, 
from Eq.(A.5) we find that 

 
H >0. (A.6) 
 

2. The procedure of deriving the condition h1 >0 (problem b1) is analogous  to that for the first 
problem, except that in the present case it is more convenient to use Eqs (2.1). We are interested only in 

those points of the body where F = 0. The quantities ( ) ( )andp pT   and also ( )eT are now the functions of 

. Let us assume that for given values of   and divq the loading process occurs  p 0 . From Eqs (

e p      ), (2.1)1, (2.10)1 and (2.10)2 we find  
 

( ) ( )

( ) ( )

,

.

p p
T 1

p p

F T h

T m q

    




     

F 

 

:σ

:σ 

 (A.7) 

 
This alternative set of algebraic Eqs (A.7) has a unique solution in the form  

 
( )

( )

,

,

p
1 T T

p
1

h F qF

h T m h hq

     




    

F

F

 

  

: - :

: :









  

  

 (A.8) 

 
provided that h1 = h - mFT   0. 

Let us assume, for prescribed   and divq, that the process of unloading takes place  p 0 . Then 

from (2.1)1, we obtain immediately  
 

 

( )

( )

( )

,

,

.

e

e

e

T q

q

    


     


 

L

 

  

 

:

- :



 

 

    

 

 (A.9) 

 

By evaluating ( ) ( )e e
TL F T F :   it is easily observed that  

 
( ) ( ) .p e

1h L   (A.10) 
 

Hence, the condition sought for is  
 

.1h 0  (A.11) 
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5.2. Apendix B 
 

The derivation of the sufficient local uniqueness condition for the solution of an incremental 
boundary-value problem has been modelled according to the described in (Śloderbach, [1], [2], [30]; 
Raniecki, [4], [5]; Raniecki and Bruhns, [6]).  

Let assume that there are two sets of functions  , , , Tu     and  , , , T  u    , which are solutions 

of the incremental (rate type) boundary-value problem. Our task is to find the condition for      and 

functions      and  T T   are obtained in a unique manner from Eqs (2.10)1 and (2.10)2. The 

satisfaction of this condition implies that h1 >0. 
By applying the Gauss-Ostrogradsky theorem we have  

 

   
D

dV 0       :    . (B.1) 

 

Acciording to Eq.(2.10)1, and     are functions of and    , respectively. Let us denote the 
integrand Eq.(B.1) as follows  

 

 , , ,I j j       :     (B.2) 

 

where    and                 and    andj j j      are determined by Eq.(2.11)3 .  

Bering this in mind we must find a condition for I to be a positive definite function (that is I > 0 for 

     and I = 0 for     ). Let us observe that Eq.(2.10)1 can be written in the form  

 

 1 1 1
1

j
Z

h
   L g F d  :    (B.3) 

where 
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4 1

, ,

, , = .

1 9 4 7 T

1 T 1

b m F

d q , Z qF

          




    
a a

1

g F Z F F

L L M M

   



 (B.4) 

 
a) Let j = j* = 1. On substituting (B.3) into (B.2)1 we find  
 

    , , ,1 1
1

1
I I 1 1

h
         L g F     : : :      . (B.5) 

 
Let us resolve the vector   into components, the directions of which are those of M1g and 1M F  

and the direction t normal to the other two in a 9-dimensional space with a metric L1. By evaluating the 
product  1 L :   we find that the expression for I1 (B.5) takes the form 

 



216                                                                                                                                                                     Z.Śloderbach 

        

 

: : : : ,

if ,

: , if ,

2 2
1 2

1 gf

2
1 gf

2 20
1 gf2

f 1

1
A 2B C

h 1 m

I m 1

A
m 1

M h

           


 




  


t L t F F g g

t L t F

   



:

:

 



   



 (B.6) 

where 

     

     

 

 

: :

: : , if  ,

:
, if ,

:
and  : , : , ,

,

gf
22

f gfgf

gf 2
gf22

f gggf

2
gf2

f

2 2 2
f g gf

f g

gf21
gf2

f gf

m1 1

M MM1 m

m1 1
m 1

M MM1 m

m 1
M

M M m
M M

mh 1
A B 1 m

2 M MM

 
       
   

 
     
   


   

  

   

1

1

1

1
1 1

t F g M F

g F M g

F
t M F

g M F
F M F g M g

  

 




 







 

  

 




,

as well .

1
1 2

g

0 1 gf f g

h
h C

M

A h m M M






















 



  

 (B.7) 

 
Since h1 >1,therefore I1 (B.6) is a symmetric quadratic form, which is definite positive, if 

 

.2AC B 0   (B.8) 
 

On substituting (B.7) into (B.8), we find, in a similar manner, that 
 

,2
1 1 1 1 1a h b h c 0    (B.9) 

where  a1 = 1,      b1 = mgf  Mf  Mg ,       
2 2
f g2

1 gf

M M
c 1 m

4
   . 

 
On solving the above inequality (B.9), we find the condition  

 

 1 f g gf
1

h M M 1 m
2

  .  (B.10) 



On the uniqueness conditions and bifurcation …                                                                                                             217 

On substituting Eq.(B.7) in the the above expression (B.10) we obtain easily condition (4.1). Let us 
add that in the case of  7 4 9 12 0         condition (B.10) or expression (4.1) take the form  

 

1h 0 .  (B.11) 
 
b) Let j = 1, j* = 0. Then the expression for I2 has the form  
 

    , , ,2 1 1
1

1
I I 1 0 Z

h
         L g F     : : :      . (B.12) 

 
The study of expression (B.12) for positive definiteness will be as follows. Let us resolve g in the 

directions F  and  in the following manner 
 

c g F  ,  (B.13) 
 

where c is a parameter to be used for optimizing the uniqueness condition in the case of simultaneous 
loading and unloading (j = 1 and j* = 0). Then from Eqs (B.4) and (B.13) we find  
 

     ,4 7 T 12 1 91 c m c F F b            F Ζ  .  (B.14) 

 
Then expression (B.12) must be expressed as a quadratic form. Let estimate therefore I2 as follows  
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2 2 1

1

1
I I cA A

h          L  : :      (B.15) 

where  

,
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2 2
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1 1

c
I I A A

h
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
 

 
 
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


     


F F   : :

  (B.16) 

 
Let us resolve, as before, the vector    in the directions M1 and the direction t1 normal to M1 in a 

9-dimensional space with a metric L1. On substituting the result thus obtained into (B.15) we find that  
 

   : :
2 2

2 1 1 1 1
1

1
I A 2B A C A

h  
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 

t L t  :       (B.17) 

where 
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1
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M
M
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
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
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
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
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 (B.18) 

 
Expression (B.17) is a positive quadratic form, if 
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.2
1 1 1A C B 0    (B.19) 

 
On substituting expression (B.18) into (B.19) we find 
 

2

1

M
h

4c
 .  (B.20) 

 
The form of expression (B.20) shows that we have a one-parameter family of uniqueness conditions, 

the parameter being c. We want to determine the condition of minimum with respect to c, to be able to 
estimate the bifurcation states as closely as possible. 

On substituting Eq.(B.13) in Eq.(B.20), we obtain 
 

   : 2 2 2
1 1 g g f f

1 1
h c c M 2cM c M

4c 4c
          g F M g F  , (B.21) 

 
where  g f 1 1M   g M F F M g: : .  

 
The right-hand side of Eq.(B.21) must, therefore, become minimum in the scalar parameter c. Let 
 

 
2
g 2

g f f

M1
F c 2M cM

4 c

 
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 
 

,  (B.22) 

then 
 F c

0
c





.  (B.23) 

From condition (B.23) we find that  
 

 , , and .g
0 0 0

f

M
c F c F c 0

M
     (B.24) 

 
On substituting Eq.(B.24)1 into inequality (B.21) we obtain, after some manipulation, that 

 

 1 g f g f
1

h M M M
2

  .  (B.25) 

 
By introducing the notations (B.7) we obtain easily expression (4.1) sought-for.  
It can be shown that the right-hand member of Eq.(B.17) is zero, if  

 

 :1 1A B A          and       1B CA  :  .  (B.26) 

 
Hence, 2 2I I   if A 0  . Then it follows from Eqs (B.16) - (B.26) that 2I 0 . 

c) Let j = 0, j* = 1. The procedure of demonstrating that  
 

 , , ,3I I 0 1 0    ,   (B.27) 

 
is analogous to that in the case (b). We have, therefore, 
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,3 3
1

c
I I A A

h


      (B.28) 

 

where  and1 1A Z 0 A Z 0      F F : :
     .  

 
Hence,  
 

     : :
22

3 3 1 1 1 1
1

1
I I A 2B A C A

h


 
          

t L t  :      (B.29) 

 
where ( , , and1 1 1 1A B Ct ) are defined by Eq.(B.18).  

Similarly to the case (b) it follows that 3I 0 . 
d) Let j = j* = 0. Then the integrand  
 

 , , ,4 1I I 0 0   L   :    ,  (B.30) 

 

is positive definite because a
1L L  is positive definite. Then from (B.1) it follows directly that    . 

 
5.3. Apendix C 
 

It will now be shown that J   is positively definite if expression (4.1) is satisfied. It will be shown 
that the sufficient local uniqueness condition for the integrand J   is the same as in the case of an generalized 
thermo-elastic-plastic body J (4.4). It constitutes also a criterion enabling us to confirm the reason for 
introducting the expression J  . Let us denote 

 

 2x   1g F M W
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. (C.1) 

 

From Eq.(4.6) (Part I) and (C.1) after transformations it follows that 
 

   

   

,

.

2

2
1

1 x

1 x

     




    

1 Z

1 Z 1

M W Μ N B

W L Μ L N L B





 (C.2) 

 

On substituting Eq.(C.1) into (4.7), we obtain  
 

  :
2

1 12
1

1
J

4x H
       M M W  : -   . (C.3) 

 

On resolving   onto the directions W and t  normal to W in a 9-dimensional space with a metric 
M1, we obtain the expression 

 

 :
2
wM

 
   1M W

t W


 
  (C.4) 
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where 2
wM  1W M W: .  

Then J   (C.3) will have the form  
 

  : :2 2
1 1 w 12

1

1
J 4x H M

4x H
    t M t M W . (C.5) 

 
From (C.5) it follows that J   is positive definite, if  
 

 :1 2

1
H

4x
 1W M W . (C.6) 

 
Condition (C.6) must now be optimized by finding the minimum in the parameter x2. Condition (C.6) 

yields a one-parameter family of sufficient uniqueness conditions for a comparison body. 
Let: (y = x2), hence y >0. 
Then 
 

   :
1

P y
y

 1W M W . (C.7) 

 
Calculating the derivative of Eq.(C.7) and likening it to zero, we obtain 

 

     

   

,

then

2 .

2

P y 1 2
0

y yy

y


    



 


1 1 1

1

W M W W M L B

W B W M W

: :

: :

 (C.8) 

 
The expression (C.8)2 results from the condition of the function P(y) taking an extremum value in the 

scalar parameter y. Expression (C.8)2 must be transformed to obtain the desired result, the expressions for W 
(cf. Eq.(C.2)1) being taken into account. Let us rewrite expression (C.2)2 in the form  

 

,2
1 x  1W W L B  (C.9) 

where 

 1 .1    1 z 1W L M L N L B  

 
on substituting Eq.(C.9) into (C.8), we find, after rearrangement  
 

2
0y x

 

 
 

  1

1

g L g

F L F

:

:
 (C.10) 

 

where and 
g F  are defined by relations (4.6)1 and (4.6)2, respectively. 

It can be easily shown that by substituting Eq.(C.10) into (C.6) and taking into consideration (4.6)  
and (C.9) we shall obtain, after rearrangement 
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   .1 1
1

H
2
   1 1 1 1W M W B L B W B: : :  (C.11) 

It can also be shown that  
 

and1   1W g B M F


.  (C.12) 

 
Then, from Eqs (2.5), (2.6), (4.2) and (C.12) it follows that  
 

.1H h  1g M F:


 (C.13) 

 
On substituting Eq.(C.12) and (C.13) into (C.11) we find easily, after rearrangement, condition (4.1), 

our proof. thus being accomplished.  
 
5.4. Apendix D 

 
It will be shown by analogy (Appendix C) that I’ is positive definite if inequality (4.1) is satisfied. 

This will be show that the sufficient local uniqueness condition for the integrand J   is the same as in the 
case of an generalized thermo-elastic-plastic body I (4.16). It constitutes also a criterion enabling us to 
confirm the reason for introducting the expression I’.  

Let us denote on the basis of (4.15) that 
 

 2y  1 1g F L W


. (D.1) 

 
From expression (C.1) we will that after sliding tensor M1 receive that  

 

 2
1 1 M g y F W


 (D.2) 

 

where M1 =    , ,
1

1 T K


 L  but expressions on g and F


 follow from Eq.(4.2). 

On substituting Eq.(D.1) into (4.15), we obtain 
 

 ' :
2

1 2
1

1
I

4 y h
     1 1L L W  :   . (D.3) 

 

On resolving   onto the directions W1 and t  normal to W1 in a 9-dimensional space with a metric 
L1, we obtain the expression 

 

 
1 2

wL


   1 1L W

t



: 

  (D.4) 

 

where  2
wL  1 1 1W L W: . 

 
Then 
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  ' 2 2
1 1 1 1 w2

1

1
I 4y h L

4y h
    1 1t L t L W: : . (D.5) 

 
From (D.5) it follows that I’ is positive definite, if 

 1 2

1
h

4y
 1 1 1W L W: . (D.6) 

 
Condition (C.6) yields a one-parameter family on account of the y2 parameter of sufficient 

uniqueness conditions for a comparative body. Condition (D.6) must now be optimized by finding the 
minimum in the parameter y2. 

Let (r  y2), hence r > 0. 
Then  
 

 ( ) 1
1

r
4r

 1 1W L W: . (D.7) 

 
Substituting (r  y2) in Eqs (D.2) and (D.7) and likening the calculated derivative to zero, we receive  
 

     1 12

r 1 2
0

r rr


   

 1 1 1 1W L W W L M F: :


 , (D.8) 

therefore 

   12 r  1 1 1W F W L W: : . (D.9) 

 
Substituting g and F  determined by expressions (4.2) and (r  y2) into Eq.(D.9), after conversions, 

yields 
 

2
0y  1

1

g M g

F M F

:

: 
. (D.10) 

 
This is a similar expression received earlier in papers (Śloderbach, [1], [2], [30]; Raniecki, [4], [5]; 

Raniecki and Bruhns, [6]; Śloderbach and Pajak, [28]). It can be shown that, by substituting Eqs (D.2), 
(D.10) into (D.6) and taking into consideration (4.2) we shall obtain, after rearrangement, that  

 

h1    ( ) ( ) ( )a a a1

2
    

g M g F M F g M F: : :
  

 = cr
1h . (D.11) 

 
Let us note that this expression is analogical to the expression obtained for the case of a generalized 

coupled elastic-thermoplastic body, see relationship (4.1). This mathematical fact proves that introduction of 
such an integrand  I’ for the reference body dependent on statically admissible stress velocity fields is right.  

Finally, we can state once again that condition (D.11) is also the necessary and sufficient condition if 
the expressions J, see (4.4) and J ’, see (4.7), and the expressions I, see. (4.12), I’, see (4.15), may be 
positively defined.  
 
6. Conclusions  

 
1.  In the paper, the necessary and sufficient conditions of uniqueness of solution of the formulated 

incremental boundary problem of coupled generalized thermoplasticity for small gradients of 
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displacements (small strains), were derived. Global sufficient conditions and also local sufficient 
conditions (safer for small strains) were derived. Conditions of uniqueness for the generalized 
thermoplastic body, see (Śloderbach, [1], [2], [3], [7], [30]) and for suitable comparison bodies were 
determined. The derived conditions of uniqueness (global and local) are suitable necessary and sufficient 
criteria excluding bifurcation of equilibrium states of coupled generalized thermoplasticity, also in 
isothermal loading processes. It was also shown that the local conditions of uniqueness for the 
generalized thermoplastic bodies and the comparison bodies have the same form. Thus, introduction of 
such comparison bodies seems to be proper. But the global conditions of uniqueness and the global 
criteria of bifurcation have different forms.  

2.  There are papers concerning problems of solution of uniqueness and bifurcation of equilibrium states (see 
Raniecki and Mróz, [4], [5]; Raniecki, [6], [33]; Raniecki and Sawczuk, [36]; Raniecki and Bruhns, [34]; 
Śloderbach, [1], [3]). In this paper, however, a new global and local criterion was formulated for the derived 
comparison body dependent on statically permissible velocity fields of stress. Thus, this paper is a continuation 
of the previous papers (Śloderbach, [1], [2], [3], [8], [30]). The conditions of uniqueness and bifurcation 
criteria derived in the previous papers (Śloderbach, [1], [3]) concerned a comparison body derived for 
generalized coupled thermoplasticity depending on kinematically admissible strain velocity fields.   

3.  We can assume that in the areas of the plastically deformed body where the conditions of uniqueness or 
the bifurcation criteria are exceeded, submicro- or microconcentrations of strains can occur. Microcracks 
and microlocalizations of strains are possible; then they become macrolocalizations while further 
developing and nucleation occurs, leading to a crack in the material. The influence of such concentrators 
can be especially important under variable mechanical and thermomechanical loadings, or creep, so 
connected with fatigue strength or material cracking (Nguyen, [27]; Raniecki and Sawczuk, [36]; 
Śloderbach, [30]; Śloderbach and Pajak, [28]). 

4.  In a generalized case, constitutive equations of coupled thermoplasticity are of the character of non-
associated laws of plastic flow, even in the case of the assumption of Gyarmati postulate (Gyarmati [9]), 
see (Śloderbach, [1], [2], [8], [30]). These equations include effects of thermomechanical couplings, and 
include a phenomenon of elastic-plastic coupling. It means that they can be applied for a description of 
not only plastic metallic, brittle and semi-brittle materials, but porous materials, sintered powders, rocks, 
soils, concretes and other materials as well (Hueckel and Maier, [39], [40]; Maier, [41]).  

5.  In the paper, only general expressions were derived for constitutive functions of coupled generalized 
thermoplasticity. They occur in both necessary and sufficient global and local conditions of uniqueness of 
solution  of the formulated incremental boundary-value problem. During further investigations, the 
constitutive functions of coupled generalized thermoplasticity should be specified within mechanics of 
continuous media according to experimental results. 

 
Nomenclature 
 
 andc c    – specific heat capacity measured at constant elastic strain and stresses in [1/(kgK)] 

 D  – expresses dissipation of mechanical energy per unit time and volume 

 divq = iq

xi




, xi    – orthogonal coordinates which express the initial location of the particle 

 E  – Young’s modulus 
 e p  – deviatoric part of plastic deformation tensors p, e p  devp 
 F  – law function of plastic flow determined in the variables state space {T, , K} 
  F1  – generalized law function of plastic flow determined in the thermodynamic force space {T, , -, K} 
  h  – hardening function 
 K  – pair of internal parameters K  {(M)

 ; (N)} M = 1   m, N = 1   n 
  and L  – tensor of isothermal elastic moduli and tensor of elastic compliance, respectively 

  ( , , )
1

1 T K


 M L , and    T
K

ijmn mnrs is jr ir jsY
2 M L 

      and Mijmn = Mmnij = Mjimn = Mijnm 
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 N  – vector of pairs of tensors of the fourth and second order representing isothermal variation of the 
state of stress due to internal processes accompanying plastic deformation also in the state TY 

  

  q  – vector of the density of heat flow rate, [J/(m2s)] 
 q  – denotes the heat flux exchange with the neighbourhood per unit time across an unit area in 

[J/(m2s)] 
 T  – thermodynamic temperature in [K] 
  T0   – reference temperature corresponding to the TRS – it may be, for example, the ambient temperature 
 T  – gradient T (gradT) 
 (TRS)  – abbreviation for “thermodynamic reference state”, where T = T0, K = 0 and   e = 0 

 XD  – set of dissipative (mechanical) thermodynamic forces, X
D ={, -, 

1

T
T} 

 Dx   – set of dissipative (mechanical) thermodynamic flows, Dx  = { , ,p q   } 

  Y  – yield stress in uniaxial tension 
 Y0   – initial yield stress, for p = 0 
 Y1   – yield stress in uniaxial tension as dependent on (, , T)  
 TY 

 ={T, e, }  

and TY 
 ={T, , } 

– variables of thermodynamic state 

 Z  – vector of tensor pairs composed of the fourth and second order representing the isothermal 
variation of elastic deformation due to the internal processes accompanying plastic deformation 
in state TY 

 , then Z  {Zmnkl ; Zmn} 

   – symmetric tensor of thermal expansion coefficients, such that ij = const 
 s   – amount of entropy generated within a unit volume over a unit time and referred to a given 

material particle 

    – tensor of total deformations, e p       

  ande p     – tensor of small elastic and plastic deformations 

  and   – symmetric second rank tensor and scalar internal parameter, respectively 
   – plasticity multiplier 
  and   – Lamé elastic constants 
   – Poisson ratio 
   – pair of internal thermodynamic forces associated with a pair of internal parameters K,    

{(M)
 , (N)}M = 1   m, N = 1  n 

  0 and   – body density in a thermodynamic reference state and in an actual one, respectively 
   – Cauchy stress tensor 
 (i)  – effective deviator of stress 
 0  – yield stress value obtained in the uniaxial tension test for p = 0 

 
Tensors will be printed in a bold type-face. The summation convention is assumed along with the following 

detailed notation 
 

AB  AijBj     or     AijklBkl     (i, j, k, l, m, n,... = 1, 2, 3) 
 
trA  Akk ,     tr(AB)  AijBji 
 

A:B  AiBi     or     AijBij 
 

A  B  AiBj     or     AijBkl 

 

1 - identity tensor, ij - Kronecker delta, 0 - null tensor, 
 

symA   ij ji
1

A A
2

 , devA = A  
1

3
(trA)1 – deviatoric part of tensor A 
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Ai,j = i

j

A

x




, where: xj – coordinates of a material particle 

 

A
A

t





 , where: (t – time), 


A

B
dB  ij

kl
kl

A
dB

B




 

 
If Z denotes pairs of tensors of the fourth and the second order, then Z  {Zmnkl ; Zmn}, and M is the tensor of 

the fourth order, then the operation MZ is a pair of tensors of the fourth and the second order defined as follows  
 

MZ{Mijmn Zmnkl ; Mijmn Zmn}. 
 

If  and K denote pairs of tensors of the second and the zeroth order, then the operation K produces a scalar, 
cf (Śloderbach, [1], [2], [9], [30]), 

 
K = : = ijij + . 

 
If the function F is relative to  and K, then F() = F(, ) and F(K) = F(, ), the derivatives of function F 

with respect to a pair  and K are defined as follows 
 

,
F F F     
   

     and     ,
F F F

K

     
   

. 

 
The differentials of function F with respect to the pairs K and  of tensors of the second and the zeroth order 

produce the following form 
 

F
d


 


 = ,ij

ij

F F
d d

     
   

and 
F

d
K





 = ij

ij

F
d

  


,
F

d
 
 

. 

 

The differential of function F with respect to the pair � of tensors of the second and the zeroth order, produces a 
sum, cf (Śloderbach, [1], [2], [9], [30]), such that 
 

;ij ij
kl kl

kl kl
d d d d d

             
      

. 

 

If Z denotes pairs of tensors of the fourth and the second order and K is a pair of tensors of the second and the 
zeroth order, then the operation Z Κ  produces a pair of tensors of the second order such that 

 

 ;ijmn mn ijZ Z   Z Κ , and 
   
   

T T
K K

T T
K K

Y Y

Y Y

 

 

   

   


LN L N Z

MZ M Z N
 

 
 

If  is a second order tensor, then the operation   MZ  produces a pair of tensors of the second and the zeroth 

order 

   ;ij ijmn mnkl ij ijmn mnM Z M ZMZ   . 
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