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An investigation of unsteady hydromagnetic free convection flow of a viscous, incompressible and 
electrically conducting fluid past an impulsively moving vertical plate with Newtonian surface heating embedded 
in a porous medium taking into account the effects of Hall current is carried out. The governing partial 
differential equations are first subjected to the Laplace transformation and then inverted numerically using 
INVLAP routine of Matlab. The governing partial differential equations are also solved numerically by the 
Crank-Nicolson implicit finite difference scheme and a comparison has been provided between the two solutions. 
The numerical solutions for velocity and temperature are plotted graphically whereas the numerical results of skin 
friction and the Nusselt number are presented in tabular form for various parameters of interest. The present 
solution in special case is compared with a previously obtained solution and is found to be in excellent 
agreement. 
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1. Introduction 
 
 Theoretical/ experimental investigation of hydrodynamic free convection flow from a solid body 
with different geometries embedded in a porous medium has received considerable attention during the past 
decades due to its varied and wide applications in several areas of science and technology such as geothermal 
reservoirs, thermal insulators, chemical catalytic reactors, grain storage, food processing, energy efficient 
drying of porous solids, heat exchanger devices, nuclear waste repositories, enhanced recovery of oil and 
gas, underground energy transport, etc. The most basic problem of natural convection in porous media is the 
boundary layer flow along a heated vertical flat plate embedded in a fluid-saturated porous medium which 
was investigated by Cheng and Minkowycz [1]. They obtained similarity solution for the case when the wall 
temperature varies as a power function of the distance from the leading edge. Nakayama and Koyama [2] 
analyzed combined free and forced convection flow in Darcian and non-Darcian porous media. Lai and 
Kulacki [3] studied non-Darcy mixed convection flow along a vertical wall in a fluid saturated porous 
medium. Bakier et al. [4] obtained non-similar solution for free convection flow along a vertical porous plate 
embedded in a fluid saturated porous medium in the presence of internal heat generation using the finite 
difference technique. Comprehensive reviews of thermal convection in porous media are well presented in 
the form of books and monograms by Nield and Bejan [5], Ingham and Pop [6], Vafai [7], Pop and Ingham 
[8], Ingham et al. [9] and Bejan et al. [10]. 
 It is well known that heat transfer characteristics are dependent on the thermal boundary conditions. 
Newtonian heating is a kind of wall-to-ambient heating process where the rate of heat transfer from the 
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bounding surface with a finite heat capacity is proportional to the local surface temperature and it is usually 
called conjugate convective flow. This type of situation occurs in important engineering devices such as in 
heat exchangers, gas turbines and also in convective flows set up when the bounding surfaces absorb heat by 
solar radiation (seasonal thermal energy storage systems). Therefore, the interaction of conduction-
convection coupled effects is of much significance from a practical point of view and it must be considered 
when evaluating the conjugate heat transfer processes in many engineering applications. Merkin [11] 
initiated the study of free convection boundary layer flow over a vertical surface with Newtonian heating 
while Lesnic et al. [12], [13] considered free convection boundary layer flow along vertical and horizontal 
surfaces in a porous medium generated by Newtonian heating. Lesnic et al. [14] also investigated free 
convection boundary layer flow over a nearly horizontal surface in a porous medium with Newtonian 
heating. Salleh et al. [15] discussed forced convection boundary layer flow at a forward stagnation point with 
Newtonian heating. Subsequently, Salleh et al. [16] considered steady boundary layer flow over a stretching 
sheet with Newtonian heating. Chaudhary and Jain [17] investigated unsteady free convection flow past an 
impulsively started vertical plate with Newtonian heating. Mebine and Adigio [18] studied unsteady free 
convection flow of a viscous, incompressible and optically thin radiating fluid past an impulsively started 
vertical porous plate with Newtonian heating. Narahari and Ishak [19] investigated the influence of thermal 
radiation on unsteady free convection flow of an optically thick fluid past a moving vertical plate with 
Newtonian heating. They considered three cases of interest, namely, (i) impulsive movement of the plate; (ii) 
uniformly accelerated movement of the plate and (iii) exponentially accelerated movement of the plate. 
Narahari and Nayan [20] analyzed unsteady free convection flow of an optically thick fluid past an 
impulsively moving infinite vertical plate with Newtonian heating in the presence of thermal radiation and 
mass diffusion. Olanrewaju and Makinde [21] investigated boundary layer stagnation point flow of a 
nanofluid over a permeable flat surface with Newtonian heating. 
 However, in all these investigations, the effects of the magnetic field are not taken into account. 
Investigation of unsteady hydromagnetic convective boundary layer flow of electrically conducting fluids in 
porous and non-porous media is of much significance due to its varied and wide applications in many areas 
of science and engineering, viz. boundary layer flow control, plasma studies, geothermal energy extraction, 
in the field of solar energy collection, cooling of an infinite metallic plate in a cooling bath, 
magnetohydrodynamic (MHD) stirring of molten metal, magnetic levitation and casting, MHD marine 
propulsion and on the performance of many engineering devices, namely, MHD power generators (Steg and 
Sutton [22]; Womac [23]), MHD flow-meters (Shercliff [24]), MHD pumps (Blake [25]), MHD accelerators 
(Marston [26]), controlled thermonuclear reactors (Christofilos [27]), etc. Raptis [28] investigated unsteady 
two-dimensional natural convection flow of an electrically conducting, viscous and incompressible fluid 
along an infinite vertical plate embedded in a porous medium. Jha [29] studied hydromagnetic free 
convection and mass transfer flow past a uniformly accelerated moving vertical plate through a porous 
medium when magnetic field is fixed with the moving plate. Chamkha [30] analyzed unsteady MHD free 
convection flow through a porous medium supported by a surface. Kim [31] investigated unsteady MHD free 
convection flow past a moving semi-infinite vertical porous plate embedded in a porous medium with 
variable suction. Ibrahim et al. [32] analyzed unsteady hydromagnetic free convection flow of micro-polar 
fluid and heat transfer past a vertical porous plate through a porous medium in the presence of thermal and 
mass diffusions with a constant heat source. Chamkha [33] considered unsteady MHD free convection flow 
with heat and mass transfer past a semi-infinite vertical permeable moving plate in a uniform porous medium 
with heat absorption. Seth et al. [34] obtained an exact solution of unsteady MHD natural convection flow 
with radiative heat transfer past an impulsively moving vertical plate with ramped temperature embedded in 
a porous medium. Mahmoud [35] discussed the effects of thermal radiation on unsteady MHD free 
convection flow past an infinite vertical porous plate taking into account the effects of viscous dissipation. 
Ogulu and Makinde [36] considered unsteady hydromagnetic free convection flow of a dissipative and 
radiative fluid past a vertical plate with constant heat flux. Chamkha et al. [37] investigated unsteady MHD 
natural convection flow from a heated vertical porous plate in a micropolar optically thin fluid with Joule 
heating, chemical reaction and radiation effects. They obtained solution of the governing equations by the 
implicit finite difference scheme. Mohamed et al. [38] discussed unsteady MHD free convection heat and 
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mass transfer flow of an optically thick radiating fluid past an impulsively moving infinite hot vertical plate 
in a porous medium in the presence of chemical reaction and heat sink. Singh and Makinde [39] investigated 
steady hydromagnetic free convection flow along an inclined plate with Newtonian heating in the presence 
of volumetric heat generation. Recently, Abid et al. [40] studied unsteady MHD free convection flow in a 
porous medium with constant mass diffusion and Newtonian heating. 
 However, in all the above investigations, effects of Hall current are not taken into account. If an 
ionized fluid with low density is subjected to a strong magnetic field then the electrical conductivity normal 
to the magnetic field is lowered owing to free spiraling of electrons and ions about the magnetic lines of 
force prior to collision and a current is thereby generated which is mutually perpendicular to electric and 
magnetic fields. This current is known as Hall current. It plays an important role in determining flow features 
of the fluid flow problems because it induces secondary flow in the flow-field (Sherman and Sutton [41]). 
The study of MHD viscous flows with Hall current has significant applications in several areas of 
engineering problems, viz. the development of efficient Hall thrusters in magnetic propulsion (Fife [42]), 
plasma actuator control of hypersonic flows (Shang et al. [43]), influence of Hall effects on the 
characteristics of MHD generators (Kholshchevnikova [44]) and superconducting films (Michaeli [45]) etc. 
The current trend is towards the application of a strong magnetic field (i.e., in materials processing 
(Davidson [46]), MHD energy system (Hardianto et al. [47]), MHD sea water propulsion (Mathon [48]) etc.) 
and towards a low density of the gas (i.e., in application of plasma devices for future vehicle systems (Van 
Wie [49]), nuclear fission research (Morley et al. [50] etc.). Significant contributions to hydromagnetic free 
convection flow past a flat plate with Hall effects under different thermal conditions were made by several 
researchers in the past. Mention may be made of the research studies of Pop and Watanabe [51], Abo-
Eldahab and Elbarbary [52], Takhar et al. [53] and Saha et al. [54]. Recently, Seth et al. [55] studied the 
effects of Hall current and rotation on unsteady MHD natural convection flow of a viscous, incompressible, 
electrically conducting and heat absorbing fluid past an impulsively moving vertical plate with ramped 
temperature in a porous medium in the presence of thermal diffusion.  
 The objective of the present investigation is to study unsteady hydromagnetic free convection flow 
of an electrically conducting, viscous and incompressible fluid past a vertical plate embedded in a porous 
medium taking into account the effects of Hall current when the fluid flow is generated due to impulsive 
movement of the vertical plate with Newtonian heating. According to the best of authors’ knowledge this 
problem has not yet received attention of researchers though it is significantly important in science and 
engineering. A comparison of the present solution for fluid velocity in the absence of magnetic field, Hall 
current and permeability of medium is made with the exact solution obtained by Chaudhary and Jain [17]. It 
was found that our result is in excellent agreement with that of Chaudhary and Jain [17]. 
 
2. Formulation of the problem and its solution 
 
 Consider an unsteady free convection flow of a viscous, incompressible and electrically conducting 
fluid past an infinite vertical plate embedded in a uniform porous medium. The x  axis is taken along the 
plate in the upward direction and the y  axis normal to the plane of plate in the fluid. The fluid is 

permeated by a uniform transverse magnetic field 0B  which is applied in a direction parallel to the y  axis. 

Initially, i.e., at time t 0  , both the fluid and plate are at rest and at a uniform temperature T . At time 

,t 0   the plate starts moving in the x  direction with uniform velocity 0U  against gravitational field in its 
own plane. At the same time, heat transfers from the plate to the fluid, which is directly proportional to the 
local surface temperature. Since the plate is of infinite extent along x  and z  directions and is electrically 
non-conducting, all physical quantities depend on y  and t   only. The geometry of the problem is shown in 
Fig.1. The induced magnetic field generated by the fluid motion is neglected in comparison to the applied 
one. This assumption is justified because the magnetic Reynolds number is very small for liquid metals and 
partially ionized fluids (Cramer and Pai [56]). Also no external electric field is applied so the effect of 
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polarization of the fluid is negligible. This corresponds to the case where no energy is added or extracted 
from the fluid by electrical means (Cramer and Pai [56]). 
 

 
 

Fig.1. Geometry of the problem. 
 

 Taking into consideration the assumptions made above, the governing equations for free convection 
flow of a viscous, incompressible and electrically conducting fluid through a uniform porous medium taking 
Hall current into account, under Boussinesq approximation, are given by 
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where , , , , , , , , , , , , ande e e e p 1u w m g T c K               are, respectively, fluid velocity in x  -

direction, fluid velocity in z  -direction, kinematic coefficient of viscosity, fluid density, electrical 
conductivity, Hall current parameter, cyclotron frequency, electron collision time, acceleration due to 
gravity, volumetric coefficient of thermal expansion, fluid temperature, specific heat at constant pressure, 
thermal conductivity of fluid and permeability of porous medium. 
 The initial and boundary conditions for the problem are 
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where sh  is the heat transfer coefficient. 
 Equations (2.1) to (2.3), in a non-dimensional form, assume the following form 
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, , , , , G and P2
1 r ru w T M K  are, respectively, the dimensionless primary fluid velocity, dimensionless 

secondary fluid velocity, dimensionless fluid temperature, magnetic parameter, permeability parameter, 
thermal Grashof number and Prandtl number. 
 The initial and boundary conditions (2.4), in a non-dimensional form, become 
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where /s 0h U    is the Newtonian heating parameter (Abid et al. [57], [40]). It is worth mentioning that 

0  corresponds to having sh 0 , i.e., an insulated wall is present and when  , the wall temperature 
remains constant (Salleh et al. [16]; Abid et al. [57]). 
 Equations (2.5) and (2.6) are presented, in a compact form, as 
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 Initial and boundary conditions (2.8a) to (2.8c), in a compact form, become 
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 Equations (2.7) and (2.9), after taking the Laplace transform and using initial conditions (2.10a), 
reduce to 
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 Boundary conditions (2.10b) and (2.10c), after taking the Laplace transform, become 
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           Solutions of Eqs (2.11) and (2.12) subject to the boundary conditions (2.13a) and (2.13b) are given by 
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where    Gr P1 rG 1        and       P3 r1    . 
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 The exact solution of the fluid temperature T(y, t) can be obtained by taking the inverse Laplace 
transform of Eq. (2.14) and is provided by Chaudhary and Jain [17] when 1  . Also, Chaudhary and Jain 

[17] obtained the inverse Laplace transform of Eq.(2.15) when and 0 1    . We have obtained the inverse 

Laplace transform of Eq. (2.15) for the case 0   using INVLAP routine in Matlab (de Hogg et al. [58]; 
Hollenbeck [59]). A numerical solution of fluid velocity obtained using INVLAP routine for the case when 
the magnetic field, porous medium and Hall current is absent, is compared with the exact solution presented 
by Chaudhary and Jain [17]. 
 
3. Numerical solution 
 
 Equations (2.5) and (2.6) subject to the initial and boundary conditions (2.8) can also be solved 
numerically using the Crank-Nicolson implicit finite difference scheme. Therefore, we have obtained a 
numerical solution of this problem.  
 The finite difference equations corresponding to the governing Eqs (2.5) to (2.7) are as follows  
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 Initial and boundary conditions (2.8) become 
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where suffix i corresponds to y and suffix j corresponds to t. Also, j 1 jt t t    and i 1 iy y y   . The 

region under consideration is restricted to a rectangle of finite dimensions with ymax =6 (corresponding to
y  ) and tmax=2 where . and .y 0 025 t 0 0025     such that the computational domain is divided into 

241801 grid points. The assumptions of maxy 6  and tmax=2 are justified since boundary condition 

(3.4c) is satisfied within tolerance limit of 410 . The mesh size . with time step .y 0 025 t 0 0025     is 
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finalized after comparing the results in this case with the results obtained when mesh size is reduced to 
50% of the present case and it is noticed that the difference between these two results is less than half a 
unity in the fourth decimal place. The finite difference equations at each jth level constitute a tridiagonal 
system of equations which are solved by Thomas algorithm as given in Carnahan et al. [60]. A numerical 
solution for the fluid temperature and fluid velocity is obtained corresponding to the desired degree of 
accuracy for required time by performing computations for a number of time steps. It was found that the 
absolute difference between the numerical values of fluid temperature and fluid velocity obtained for two 

consecutive time steps is less than 410  Hence the scheme designed is stable. Moreover, the Crank-

Nicolson method has a local truncation error of     2 2
O y t    which tends to zero as andy t   tends 

to zero which justifies consistency (Antia [61], pp.643-644). Stability and consistency together ensure 
convergence of the scheme. 
 The primary skin friction x  and secondary skin friction z  are given by   
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 The numerical values of skin friction and Nusselt number are obtained numerically using computed 
values of fluid velocity and fluid temperature, respectively. It may be noted that the derivatives involved in 
Eqs (3.5) and (3.6) are evaluated using five point forward difference formula for the first order derivative 
(Antia [61], page 161). 
 
3.1. Validation of numerical solution 
 
 In order to validate our numerical scheme we have presented a comparison of the results obtained 
numerically with the exact results. The expression for the Nusselt number Nu is obtained using the exact 
solution for the fluid temperature (Chaudhary and Jain [17]) which is given by  
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 We have presented in Tab.1 a comparison between the numerical values of the Nusselt number 
obtained using the INVLAP routine of Matlab and the finite difference scheme mentioned above with the 
exact values obtained from expression (3.7). It is evident from Tab.1 that the numerical values of the Nusselt 
number obtained through the finite difference scheme are in good agreement with the values of the Nusselt 
number obtained by the INVLAP routine of Matlab. Moreover, it is also noticed from Tab.1 that numerical 
values for the Nusselt number are in excellent agreement with the exact values of the Nusselt number 
obtained from Eq.(3.7). 
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Table 1. Nusselt number Nu when =1  . 
 

 
Pr→ 
t ↓ 

Result by Finite Difference Result by INVLAP routine Exact Result 
0.3 0.5 0.71 0.3 0.5 0.71 0.3 0.5 0.71 

0.3 5.0084 3.1459 2.5052 5.009 3.1462 2.5055 5.009 3.1462 2.5055 
0.5 10.2251 5.0084 3.5683 10.2295 5.0090 3.5687 10.2295 5.0089 3.5686 
0.7 20.268 7.7264 4.9304 20.3074 7.7281 4.9310 20.3074 7.7281 4.9310 

 
 In Fig.2 we have also presented a comparison between the exact values of fluid velocity obtained in 
the absence of Hall current, magnetic field and porous medium (Chaudhary and Jain [17]) with the numerical 
values of fluid velocity obtained by the Crank-Nicolson implicit finite difference scheme and by INVLAP 
routine of Matlab. It is seen that there is an excellent agreement between these solutions. This justifies the 
correctness of the results presented in the manuscript. 
 
4. Results and discussion 
 
 In order to analyze the effects of the thermal buoyancy force, magnetic field, Hall current, 
permeability of the medium, Newtonian heating, thermal diffusivity and time on the flow-field, a numerical 
solution of the primary fluid velocity u(y, t) and secondary fluid velocity  ,w y t  is depicted graphically 

versus the boundary layer coordinate y in Figs 2 to 9 for various values of the Grashof number rG , magnetic 

parameter 2M , Hall current parameter m, permeability parameter K1, Newtonian heating parameter  , 

Prandtl number rP  and time t. It is revealed from the Figs 2 to 9 that the primary and secondary fluid 

velocities attain maximum value near the surface of the plate and then decrease properly on increasing the 
boundary layer coordinate y to approach the free stream value. 
 

 
 

Fig.2. Primary velocity profiles when 2 0M  , m=0, , , P .1 r1 K 0 1 0 71     and t=0.5. 
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Fig.3. Secondary velocity profiles when 2 15M  , m=0.5, . , , P .1 rK 0 4 1 0 71     and t=0.5. 
 

 Figures 2 and 3 demonstrate the effects of the Grashof number Gr on the primary fluid velocity u and 
secondary fluid velocity w, respectively. It is noticed from Figs 2 and 3 that both u and w increase on 
increasing rG . rG  represents the relative strength of the thermal buoyancy force to the viscous force, rG  
increases on increasing the strength of the thermal buoyancy force. This implies that the thermal buoyancy 
force tends to accelerate the fluid flow in both the primary and secondary flow directions throughout the 
boundary layer region. Figure 4 illustrates the influence of the magnetic field on the primary and secondary 

fluid velocities. It is revealed from Fig.4 that u decreases on increasing 2M . With an increase in 2M , the 
secondary fluid velocity w increases in a region near the plate and then decreases in the region away from the 

plate. 2M  signifies the relative strength of the magnetic force to the viscous force, 2M  increases on increasing 
the strength of the magnetic force. This implies that the magnetic field tends to retard the fluid flow in the 
primary flow direction throughout the boundary layer region whereas it tends to retard the fluid flow in the 
region away from the plate in the secondary flow direction. However, the magnetic field tends to accelerate the 
fluid flow in the secondary flow direction in the region near the plate. This tendency of the magnetic field may 
be due to Newtonian heating at the surface of the plate. 
 

 
Fig.4. Velocity profiles when Gr=5, m=0.5, . , , P .1 rK 0 4 1 0 71     and t=0.5. 
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Fig.5. Velocity profiles when Gr=5, 2M 15 , . , , P .1 rK 0 4 1 0 71     and t=0.5. 

  

 
 

Fig.6. Velocity profiles when Gr=5, 2M 15 , m=0.5, , P .r1 0 71    and t=0.5. 
 

 

 

Fig.7. Velocity profiles when Gr=5, 2M 15 , m=0.5, .1K 0 4 , P .r 0 71  and t=0.5. 
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 Figures 5 and 6 display the effects of Hall current and permeability of the medium on the primary 
and secondary fluid velocities. It is evident from Figures 5 and 6 that both u and w increase on increasing m 
and K1. This implies that Hall current tends to accelerate the fluid flow in both the primary and secondary 
flow directions throughout the boundary layer region. It may be noted that an increase K1 implies that there is 
a decrease in the resistance of the porous medium. Due to this reason permeability of the medium tends to 
accelerate fluid velocities in both the primary and secondary flow directions throughout the boundary layer 
region. Figure 7 reveals the influence of Newtonian heating parameter on the primary and secondary fluid 
velocities. It is observed from Fig.7 that both u and w increase on increasing  . This implies that Newtonian 
heating tends to accelerate fluid velocities in both the primary and secondary flow directions throughout the 
boundary layer region. It may be noted that as the Newtonian heating parameter increases, the density of the 
fluid decreases and the momentum boundary layer thickness increases and, as a result, the velocity increases 
within the boundary layer (Abid et al. [40]).  
 

 
 

Fig.8. Velocity profiles when Gr=5, 2M 15 , m=0.5, .1K 0 4 , ,1   and t=0.5. 
 

 
 

Fig.9. Velocity profiles when Gr=5, 2M 15 , m=0.5, .1K 0 4 , ,1   and P .r 0 71 . 
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 Figures 8 and 9 depict the effects of thermal diffusivity and time on primary and secondary fluid 
velocities. It is noticed from Figures 8 and 9 that both the primary and secondary fluid velocities decrease on 
increasing the Prandtl number Pr whereas these fluid velocities increase on increasing time t. Pr  is a 

measure of a relative strength of viscosity to the thermal diffusivity of the fluid, Pr  decreases on increasing 
the thermal diffusivity. This implies that thermal diffusion tends to accelerate the fluid flow in both the 
primary and secondary flow directions throughout the boundary layer region. As time progresses, the fluid 
flow is getting accelerated in both the primary and secondary flow directions throughout the boundary layer 
region. 
 The numerical values of the primary skin friction x  and secondary skin friction ,z  are presented 

in a tabular form in Tabs 2 to 4 for various values of m, , G , P , and2
r rM t . It is evident from Tab.2 that the 

secondary skin friction, i.e., ,z  increases on increasing either 2M  or m. The primary skin friction, i.e., x  
increases on increasing 2M  whereas it decreases on increasing m when 2M 15 . This implies that the 
magnetic field and Hall current tend to enhance the secondary skin friction. The magnetic field has a 
tendency to enhance the primary skin friction whereas Hall current has a tendency to reduce it when 

2M 15 . It is worthy to note that there exists flow separation at the surface of the plate on increasing m 

when 2M 10  and on increasing 2M  when m=1.5. It is noticed from Tab.3 that the secondary skin friction 
,z  increases on increasing rG  whereas it decreases on increasing Pr . The primary skin friction x  

decreases, attains a minimum and then increases in magnitude on increasing Gr when Pr .0 5  and it 
decreases on increasing rG  when P .r 0 71 . x  increases on increasing Pr  when Gr 2  and it decreases in 

magnitude, attains a minimum, and then increases on increasing Pr  when Gr and5 8 . This implies that 
the thermal buoyancy force and thermal diffusion tend to enhance the secondary skin friction. Thermal 
diffusion has a tendency to reduce the primary skin friction when Gr 2  whereas the thermal buoyancy 

force has a tendency to reduce the primary skin friction when P .r 0 71 . It is also perceived from Tab.3 that 

there exists flow separation at the surface of the plate on increasing rG  when P .r 0 5  and on increasing Pr  

when G andr 5 8 . It is revealed from Tab.4 that x  decreases on increasing either or t  whereas ,z  

increases on increasing either or t . This implies that Newtonian heating tends to reduce the primary skin 
friction whereas it has a reverse effect on the secondary skin friction. As time progresses, the primary skin 
friction is getting reduced whereas the secondary skin friction is getting enhanced. 
 

Table 2. Skin friction when G , . , P . , =1 and .r 1 r5 K 0 4 0 71 t 0 5     . 
 

 

m↓   2M
→ 

x  z  

10 15 20 10 15 20 

0.5 0.8573 1.6750 2.3578 0.8487 1.0376 1.1818 
1 0.2716 0.9809 1.5818 1.2529 1.5588 1.7892 
1.5 -0.2318 0.3703 0.8950 1.3390 1.7081 1.9843 

 

Table 3. Skin friction when m=0.5, , . , =1and .2
1M 15 K 0 4 t 0 5    . 

 

 
Gr↓  rP → 

x  z  

0.3 0.4 0.5 0.71 0.3 0.4 0.5 0.71 
2 0.6292 1.9136 2.4766 2.9977 1.1696 1.0130 0.9424 0.8758 
5 -4.2461 -1.0353 0.3723 1.6750 1.7723 1.3808 1.2043 1.0376 
8 -9.1214 -3.9841 -1.7320 0.3523 2.3749 1.7486 1.4662 1.1995 



200  G.S.Seth, S.Sarkar and R.Sharma 

 

Table 4. Skin friction when m=0.5, , . , G and P .2
1 r rM 15 K 0 8 5 0 71    . 

 
 
t ↓   → 

x  z  
0.2 0.4 0.8 1 0.2 0.4 0.8 1 

0.3 3.5794 3.4016 2.8868 2.5081 0.8162 0.8367 0.8930 0.9323 
0.5 3.5128 3.2296 2.2813 1.4650 0.8306 0.8697 0.9930 1.0930 
0.7 3.4539 3.0669 1.5895 0.1238 0.8424 0.9003 1.1083 1.3020 

 
5. Conclusions 
 
 An unsteady hydromagnetic free convection flow through a uniform porous medium past an 
impulsively moving vertical plate with Newtonian heating and Hall effects is studied. It is found that Hall 
current, permeability of the medium, thermal buoyancy force, Newtonian heating and thermal diffusion tend 
to accelerate the fluid flow in both the primary and secondary flow directions throughout the boundary layer 
region. The magnetic field tends to retard the fluid flow in the primary flow direction throughout the 
boundary layer region whereas it tends to retard the fluid flow in the region away from the plate in the 
secondary flow direction. The fluid flow is getting accelerated in both the primary and secondary flow 
directions throughout the boundary layer region with the passage of time. The magnetic field and Hall 
current tend to increase the secondary skin friction. The magnetic field has a tendency to enhance the 

primary skin friction whereas Hall current has a tendency to reduce it when 2M 15 . The thermal 
buoyancy force and thermal diffusion tend to increase the secondary skin friction. Newtonian heating tends 
to reduce the primary skin friction whereas it has a reverse effect on the secondary skin friction. 
 
Nomenclature 
 
 pc  – specific heat at constant pressure           

 rG  – Grashof number 

 g – acceleration due to gravity 
 sh  – heat transfer coefficient 

 1K  – permeability parameter 

 2M  – magnetic parameter 
 m – Hall current parameter 
 rP  – Prandtl number    

 T – dimensionless fluid temperature  
 t – dimensionless time 
 u – dimensionless primary fluid velocity 
 w – dimensionless secondary fluid velocity 
   – volumetric coefficient of thermal expansion  
    – Newtonian heating parameter 
   – thermal conductivity 
    – kinematic coefficient of viscosity  
   – fluid density 
   – electrical conductivity   
 e  – electron collision time 

   
 e  – cyclotron frequency 
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