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Abstract
For industrial batch processes with unknown dynamics subject to nonrepetitive initial con-

ditions and disturbances, this paper proposes a novel adaptive data-driven set-point learning
control (ADDSPLC) scheme based on only the measured process input and output data,
which has two loops, one each for the dynamics within a batch and the other for the batch-
to-batch dynamics. In the former case, a model-free tuning strategy is firstly presented for
determining the closed-loop PI controller parameters. For the latter case, a set-point learn-
ing control law with adaptive set-point learning gain and gradient estimation is developed
for batch run optimization. Robust convergence of the output tracking error is rigorously
analyzed together with the boundedness of adaptive learning gain and real-time updated
set-point command. Moreover, another iterative extended state observer based ADDSPLC
scheme is developed with rigorous convergence and boundedness analysis, to enhance the
robust tracking performance against nonrepetitive uncertainties. Finally, two illustrative ex-
amples from the literature are used to demonstrate the effectiveness and superiority of the
new schemes over the recently developed data-driven learning control designs.

Batch processes with unknown dynamics, data-driven control, PI controller tuning, set-point
learning control, robust convergence analysis, iterative extended state observer.

1 Introduction

Owing to high flexibility and versatility for functional implementation and product manufacturing,
batch processes with repetitive dynamics and operations have been widely constructed in engineer-
ing practice, e.g., polymer injection molding [1], pharmaceutical crystallization [2], etc. Over the
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past decades, a large amount of research efforts has been devoted to advanced control methods and
technologies for various batch processes in industry. Among them, iterative learning control (ILC)
has attracted broad attention due to its capability of gradually improving system performance by
making use of the historical batch run data with no or moderate process model information, as
surveyed in [3, 4, 5].

Since the pioneering work in [6], a lot of ILC methods have been studied for linear/nonlinear
batch processes and repetitive systems operated in a finite duration, based on the lifting technique
[7], two-dimensional (2D) system theory [8, 9], contraction mapping principle [10], norm-optimal
technique [11], etc. Recently, it has been clarified that the conventional ILC, also named as open-
loop ILC, is able to maintain robust convergence of the resulting control system in the presence of
nonrepetitive process uncertainties, initial conditions and external disturbances [12, 13]. However,
the conventional ILC method likely leads to unacceptable tracking errors in the initial batch runs,
especially for open-loop unstable processes, even though the batch-direction convergence of tracking
errors could be guaranteed. In turn, the current iteration tracking error (CITE) was considered in
the design of ILC updating law in [14] to expedite the convergence speed by increasing the learning
gain associated with the CITE. Subsequently, real-time process state and output information were
also taken into account in the ILC design through an identical closed-loop controller, forming the
so-called direct-type ILC framework (see e.g., [15, 16]).

In contrast to the direct-type ILC methods, indirect-type ILC has gained increasing attention
in recent years owing to that real-time feedback control and feedforward learning control could
be separately designed. In particular, if the feedback control structure is configured a priori for
the controlled process, it suffices to design a set-point learning controller for realizing batch opti-
mization without modifying the existing closed-loop structure, which is more appealing in various
engineering applications. By using the 2D Roesser system description, a PID-type indirect ILC
was proposed in [17] for batch processes with time-varying uncertainties, followed by an improved
PI-based indirect-type ILC method [18] designed in terms of the 2D Fornasini-Marchesini model
framework. In [19], a set-point related indirect-type ILC design was presented based on a model
predictive control scheme to address the process output constraints. Different from the previous
indirect-type ILC methods based on a unity feedback control structure, the recent paper [20] de-
veloped an extended state observer (ESO) based indirect-type ILC for batch processes with time-
and batch-varying uncertainties, such that the set-point tracking and disturbance rejection perfor-
mance could be evidently enhanced owing to the intrinsic two-degree-of-freedom tuning properties
of the inner-loop feedback control structure. Nevertheless, most of the existing indirect-type ILC
designs, together with the corresponding convergence analysis, basically depend on the process
modeling or dynamics information, thus limiting their applications to complex industrial processes
that are difficult to model.

With the increase of scale and complexity for modern industry and manufacturing systems,
it becomes more time-consuming or even impossible to model complex process dynamics accu-
rately by using the traditional first-principle or system identification methods. Data-driven control
(DDC), using only the measured input/output (I/O) data of the controlled processes, has become
a very active research area, see, e.g., the monographs [21, 22], survey papers [23, 24] and the refer-
ences therein. For example, Meng et al. [25] proposed an optimization-based design for data-driven
learning control of nonlinear systems subject to time-varying dynamics, along with convergence
analysis. By using a radial basis function neural network to estimate the unknown pseudo-partial
derivative of a dynamic linearization model and nonrepetitive external disturbances, a data-driven



predictive ILC scheme was developed in [26] for repeatable nonaffine nonlinear discrete-time sys-
tems subject to nonrepetitive disturbances. Recently, a controller-dynamic-linearization-based
data-driven ILC (DDILC) was designed in [27] for unknown nonlinear systems, where the dynamic
linearization technique was applied to not only the controlled nonlinear system but also the non-
linear learning controller. To improve the system tracking performance, a data-driven high-order
optimal ILC was developed in [28] for a class of nonlinear repetitive control systems, by introducing
the tracking errors and control inputs from previous iterations into the ILC updating law.

Note that the above-mentioned DDILC methods directly update the control input and there-
fore, could not guarantee the convergence or stability of the resulting learning system when ap-
plied to a batch process with an a priori feedback control loop. To facilitate the application to
linear/nonlinear batch processes with an inherent P-type feedback control structure, an indirect
adaptive DDILC method was recently proposed in [29] to improve the system tracking performance
by updating the set-point command for batch run. In fact, the proportional-integral (PI) controller
has much wider applications in engineering practice [30] because it can eliminate the steady-state
tracking error and counteract a constant-type disturbance, compared with the P-type feedback
controller. Recently, it has been revealed that the PI/PID controller could be used to stabilize
uncertain nonlinear systems [31, 32, 33]. However, it remains open as yet to tune a PI or PID
controller by only using the system I/O data without any prior knowledge of the system dynamics,
let alone the combination with a data driven set-point learning control (DDSPLC) scheme for
batch run optimization under unknown system/batch dynamics and nonrepetitive uncertainties.
These issues motivate this study.

In this paper, a robust PI-based adaptive DDSPLC (PI-ADDSPLC) scheme is proposed to
realize performance optimization of batch processes with unknown dynamics and an inherent PI
feedback control structure, based on only the measured process I/O data rather than an a pri-
ori model. A model-free tuning strategy of PI controller is firstly presented to determine a set
of time-invariant PI controller parameters to facilitate the initial batch run and the subsequent
set-point learning control design. Then an ADDSPLC is developed to regulate the set-point com-
mand of the established closed-loop PI control structure for realizing batch run optimization. The
robust convergence of tracking error along with the boundedness of adaptive learning gain and
set-point command is analyzed by the mathematical induction. Moreover, to enhance the track-
ing performance in the presence of nonrepetitive uncertainties, an iterative ESO (IESO) based
PI-ADDSPLC is further designed, along with robust convergence and boundedness analysis. Two
illustrative examples from the literature are adopted to validate the effectiveness and advantage
of the proposed schemes. The main contributions of this paper include:

(i) A novel ADDSPLC scheme based on the widely used PI control loop is established for lin-
ear/nonlinear batch processes with unknown dynamics subject to nonrepetitive initial con-
ditions and disturbances. The system tracking performance could be significantly improved
from the first batch and on, compared to the recently developed indirect-type DDILC meth-
ods (e.g., [34] based on a P-type feedback control loop) and direct-type DDILC methods (e.g.,
[25]). Moreover, a feasible data-driven PI tuning algorithm is provided to facilitate setting
up a PI control loop for the set-point learning control design without any priori knowledge
of the process dynamics.

(ii) To proactively suppress nonrepetitive uncertainties such as initial condition shifts and batch-
varying disturbances, another IESO based PI-ADDSPLC scheme is proposed by introducing



an IESO into the PI-ADDSPLC scheme to estimate nonrepetitive uncertainties for coun-
teraction, such that the output tracking accuracy is further improved. The new scheme
substantially extends the time-domain ESO-based data-driven control method recently de-
veloped in [34] to an iterative-domain design of DDILC for batch run optimization.

(iii) Robust convergence of the output tracking error along with the boundedness of adaptive
learning gain and set-point command is rigorously analyzed by the mathematical induction
for both of the new designs.

For clarity, the remainder of this paper is structured as follows. Section 2 briefly introduces
the research problem and required preliminaries. Next, a model-free tuning strategy of PI con-
troller parameters is given in Section 3. The proposed robust PI-ADDSPLC scheme is detailed in
Section 4, followed by robust convergence and boundedness analysis for the resulting ILC system
in Section 5. In Section 6, another IESO based PI-ADDSPLC scheme is developed, together with
the corresponding robust convergence analysis. Two examples from the recent literature are used
in Section 7 to demonstrate the effectiveness and superiority of the new schemes. Finally, Section
8 summarizes the main developments in this paper and discusses possible future research.

Notation: Throughout the paper, the following notation is used. Z+ = {0, 1, . . .}, ZN =
{0, 1, . . . , N} and ZN/{0} = {1, . . . , N} for any N ∈ Z+. Rn and Rn×m denote n-dimensional
Euclidean space and n×m real matrix spaces, respectively. I and 0, respectively, denote the iden-
tity and null matrices with compatible dimensions. Also, | · | and ∥ · ∥ denote the absolute value
and the Euclidean norm of the argument, respectively. For a matrix A, A⊤ denotes its transpose,
and for any function fk(t) where k and t denote the batch and time indices, respectively, denote
by ∆fk(t) = fk(t)−fk−1(t) and ∆tfk(t) = fk(t)−fk(t−1) the difference functions along the batch
and time directions, respectively.

2 Problem formulation and preliminaries

Consider a batch process with unknown dynamics described by

yk(t+ 1) = f
(
yk(t), yk(t− 1), . . . , yk(t− ny),

uk(t), uk(t− 1), . . . , uk(t− nu)
)
+ ωk(t),

(1)

where t ∈ ZN−1 and k ∈ Z+ are, respectively, the time step and batch number; N is the total
length of each batch; yk(t) ∈ R and uk(t) ∈ R are the process output and input at time t of batch
k, respectively; ωk(t) denotes the nonrepetitive disturbances acting on the process dynamics, and
includes batch-to-batch variation of the process dynamics; f(·) is an unknown linear/nonlinear
function with unknown input order nu and output order ny. The initial condition in (1) is taken as
yk(0) = y0+δk, where y0 is an identical initial resetting for a batch run and δk denotes nonrepetitive
initial shifts. Hereafter, the unknown function f(·) in (1) is rewritten as f(x1, x2, . . . , xnu+ny+2) for
the notational brevity, where xi ∈ R, i = 1, 2, . . . , nu + ny + 2, denotes the i-th variable of f(·).

The objective in this paper is to design a robust adaptive set-point learning control scheme
based on only the measured I/O data for a batch process described by (1) with a PI feedback
control structure, such that the process output tracks the desired reference trajectory as closely
as possible in the presence of nonrepetitive external disturbances and initial shifts along the batch



direction, i.e., for any t ∈ ZN/{0}

sup
k∈Z+

|ek(t)| ≤ βe, lim sup
k→∞

|ek(t)| ≤ βesup , (2)

where ek(t) ≜ yd(t) − yk(t), yd(t) denotes the desired reference trajectory and satisfies |yd(t)| ≤
βd < ∞, where βd is a finite constant, βe and βesup satisfying βe > βesup ≥ 0 are related to the upper
bounds of nonrepetitive external disturbance variation and initial shifts. Moreover, the set-point
command ysk(t) is required to be bounded for implementation, i.e.

sup
k∈Z+

max
t∈ZN−1

|ysk(t)| ≤ βs < ∞, (3)

where βs > 0 is a finite constant.
For the simplicity of analysis, the following assumptions are made along with a technical lemma.

Assumption 1 u0(t) = 0 for any t ∈ ZN−1 and yk(t) = 0 if t < 0 or k < 0.

Assumption 2 [25] The function f is continuously differentiable such that the partial derivatives
with respect to its arguments are bounded, i.e.∣∣∣∣ ∂f∂xi

(x1, x2, . . . , xny+nu+2)

∣∣∣∣ ≤ βf ,

∀xi ∈ R, i = 1, 2, . . . , ny + nu + 2,∀t ∈ ZN−1,

where βf > 0 is a finite constant. Furthermore, let ∂f/∂xny+2 be sign-fixed, which is assumed to
be positive, without loss of generality.

Assumption 3 [21, 36] A batch process described by (1) satisfies the following generalized Lips-
chitz condition along the time direction

|∆tyk(t+ 1)| ≤ βΓ∥∆tHk(t)∥ (4)

for ∥∆tHk(t)∥ ≠ 0, where βΓ > 0 is a finite constant and ∆tHk(t) = [∆tyk(t) ∆tuk(t)]
⊤.

Assumption 4 [35, 20] The nonrepetitive external disturbances and initial condition shifts are
bounded, i.e.

|ωk(t)| ≤ βω, ∀t ∈ ZN−1, ∀k ∈ Z+,

|δk| ≤ βδ, ∀k ∈ Z+,

where βω and βδ are finite positive constants.

Assumption 1 reflects the widely used initial zero or steady state of the process dynamics for
the convenience of control design and stability analysis. Assumptions 2 and 3 are widely used in
the research fields of nonlinear system control and data-driven control (e.g., [21, 22, 23, 24, 31, 25,
32, 33, 36]) to characterize the process nonlinearity, i.e., the process output change is constrained
by the changes in all the input and past output variables. Assumption 4 is also widely used for
ILC design of batch/repetitive processes with nonrepetitive uncertainties in the literature (e.g.,
[12, 35]), owing to physical constraints of batch process operation in practice.



Lemma 1 [35] Under Assumption 2, the batch process description in (1) can be equivalently trans-
formed into the following extended dynamic linearization data model (DLDM)

yi − yyyj = ΦΦΦi,j(uuui − uuuj) +ΥΥΥi,j(ωωωi −ωωωj)

+ ϑϑϑi,j(δi − δj), ∀i, j ∈ Z+,
(5)

where

ΦΦΦi,j =


ϕ0
i,j(0) 0 · · · 0

ϕ1
i,j(0) ϕ1

i,j(1) · · · 0
...

...
. . .

...
ϕN−1
i,j (0) ϕN−1

i,j (1) · · · ϕN−1
i,j (N − 1)

 ,

ΥΥΥi,j =


1 0 · · · 0

υ1
i,j(0) 1 · · · 0
...

...
. . .

...
υN−1
i,j (0) υN−1

i,j (1) · · · 1

 ,

ϑϑϑi,j =
[
ϑ0
i,j ϑ1

i,j · · · ϑN−1
i,j

]⊤
,

yyyi =
[
yi(1) yi(2) · · · yi(N)

]⊤
,

uuui =
[
ui(0) ui(1) · · · ui(N − 1)

]⊤
,

ωωωi =
[
ωi(0) ωi(1) · · · ωi(N − 1)

]⊤
and all nonzero elements of ΦΦΦi,j, ΥΥΥi,j and ϑϑϑi,j are bounded, i.e., there exists a finite bound βϕ > 0
such that

|ϕt
i,j(ξ)| ≤ βϕ, ∀ξ ∈ Zt,∀t ∈ ZN−1, ∀i, j ∈ Z+,

|υt
i,j(ξ)| ≤ βϕ, ∀ξ ∈ Zt, ∀t ∈ ZN−1, ∀i, j ∈ Z+,

|ϑt
i,j| ≤ βϕ, ∀t ∈ ZN−1, ∀i, j ∈ Z+.

(6)

In contrast to the standard DLDM that characterizes the iterative dynamic relationship between
the process output and input at two consecutive batches, the extended DLDM further generalizes
the relationship to any two batches. Moreover, the parameter matrix ΦΦΦi,j and uncertainty infor-
mation composed of external disturbances and initial shifts could be separately estimated in the
extended DLDM.

Taking i = k and j = k − 1 in (5) gives

∆yk(t+ 1) = ϕϕϕ⊤
k,k−1(t)∆uuuk(t) + χk(t), (7)

where χk(t) = ∆ωωω⊤
k (t)υυυk,k−1(t) + ϑt

k,k−1∆δk and

ϕϕϕk,k−1(t) =
[
ϕt
k,k−1(0) ϕt

k,k−1(1) · · · ϕt
k,k−1(t)

]⊤
,

∆uuuk(t) =
[
∆uk(0) ∆uk(1) · · · ∆uk(t)

]⊤
,

∆ωωωk(t) =
[
∆ωk(0) ∆ωk(1) · · · ∆ωk(t)

]⊤
,

υυυk,k−1(t) =
[
υt
k,k−1(0) υt

k,k−1(1) · · · 1
]⊤

.



Using Assumption 4 and Lemma 1, it follows that χk(t) is bounded for any t ∈ ZN−1 and k ∈ Z+

and assumed to satisfy supt∈ZN−1,k∈Z+
|χk(t)| ≤ βχ(β∆ω, β∆δ), where βχ(β∆ω, β∆δ) > 0 is a finite

constant dependent on the finite bounds of supt∈ZN−1,k∈Z+
|∆ωk(t)| and supk∈Z+

|∆δk| defined by
β∆ω and β∆δ, respectively. For the notational brevity, a symbol “•” is used to indicate the relevance
to β∆ω and β∆δ in the later sections.

3 Data-driven PI controller tuning

A data-driven PI tuning method is developed in this section to set up the inherent PI feedback
control loop. For this purpose, the following time-domain DLDM is established for a batch process
described by (1) under Assumptions 2 and 3

∆ty(t+ 1) = Γ(t)∆tH(t), (8)

where Γ(t) = [γ1(t) γ2(t)] is a time-varying pseudo-gradient vector dependent on the process input
and output in the time domain. More details on the model transformation (8) are given in [21].
In this section, the batch index k is omitted since it is irrelevant to the time-domain PI controller
tuning.

To tune the PI controller in the time domain, the following performance function is introduced

J1(u(t)) = |yd(t+ 1)− y(t+ 1)|2 + λt |u(t)− u(t− 1)|2 ,

where λt > 0 is a user-specified weighting factor for evaluating the impact of input variation in the
time domain. Taking the first-order derivative of J1(u(t)) with respect to u(t) and equating the
result to zero give

∆tu(t) =
ρtγ2(t)

λt + γ2
2(t)

[yd(t+ 1)− y(t)− γ1(t)∆ty(t)] , (9)

where ρt ∈ (0, 2) is a tuning parameter to offer a flexible feedback control law. Under a constant
set-point command, the increment of control input in (9) could be reformulated as

∆tu(t) =
ρtγ2(t)

λt + γ2
2(t)

[e(t) + γ1(t)∆te(t)]

= τP(t)∆te(t) + τI(t)e(t),

(10)

where

τP(t) ≜
ρtγ1(t)γ2(t)

λt + γ2
2(t)

, τI(t) ≜
ρtγ2(t)

λt + γ2
2(t)

.

It is seen that the time-domain increment of the control input in (10) is exactly the PI controller
in a difference equation form. Note that in the presence of a time-varying set-point command, the
closed-loop stability under the PI controller in (10) could be maintained for a finite variation of
the set-point command, e.g., a ramp type or sine signal with low frequency, see [17, 18] for more
details.

To estimate the unknown γ1(t), γ2(t) for determining the feasible tuning regions of the PI



controller parameters, the following parameter estimation algorithm [36] is used

Γ̂(t) = Γ̂(t− 1) +
ηt∆tH(t− 1)

µt + ∥∆tH(t− 1)∥2

×
[
∆ty(t)− Γ̂⊤(t− 1)∆tH(t− 1)

]
,

Γ̂(t) = Γ̂(0), if ∥Γ̂(t)∥ ≤ εt, or ∥∆tH(t− 1)∥ ≤ εt,

or sign(Γ̂(t)) ̸= sign(Γ̂(0)),

(11)

where ηt ∈ (0, 2) is a tuning parameter, µt > 0 is a weighting factor, Γ̂(t) = [γ̂1(t) γ̂2(t)], γ̂1(t) and
γ̂2(t) are the respective estimates of Γ(t), γ1(t) and γ2(t), and εt is a sufficiently small constant
for initialization. The boundedness of Γ̂(t) and the time-domain convergence of the closed-loop
system could be analyzed following the similar way as that in [21] and [36], respectively.

Based on the estimated γ̂1(t) and γ̂2(t), the feasible tuning regions of PI controller parameters
can be estimated as

τP ∈
[
τmin
P , τmax

P

]
, τI ∈

[
τmin
I , τmax

I

]
, (12)

where

τmin
P = min

t∈ZN−1

ρtγ̂1(t)γ̂2(t)

λt + γ̂2
2(t)

, τmax
P = max

t∈ZN−1

ρtγ̂1(t)γ̂2(t)

λt + γ̂2
2(t)

,

τmin
I = min

t∈ZN−1

ρtγ̂2(t)

λt + γ̂2
2(t)

, τmax
I = max

t∈ZN−1

ρtγ̂2(t)

λt + γ̂2
2(t)

.

Given (12), a tuning procedure is presented by Algorithm 1, which can be used to determine
the desired time-invariant PI controller parameters.

Algorithm 1 (PI controller tuning)

Input: Initial PI controller parameters τP = τmin
P and τI = τmin

I , tuning parameters ρt and ηt,
weighting factors λt and µt, user specified thresholds εt and ϱ, step sizes ∆τP and ∆τI for
iteration.

Output: Desired PI controller parameters τP and τI.
1: while (τP ≤ τmax

P ) do
2: while (τI ≤ τmax

I ) do
3: Apply (9) and (11) to a batch process described by (1) and compute the averaged tracking

error (ATE) defined by ATE =
N∑
t=1

|e(t)|/N ;

4: if (ATE ≤ ϱ) then
5: Determine the desired τP and τI;
6: else if (ATE > ϱ) then
7: τI = τI +∆τI;
8: end if
9: end while
10: τP = τP +∆τP, τI = τmin

I ;
11: end while



Remark 1 For unknown linear time-invariant systems with a constant-type set-point command,
the PI controller parameters obtained by the above procedure will ultimately converge to steady-state
values, which could be taken as the desired PI controller parameters. Note that the PI controller
parameters may be time-varying without steady-state values for a nonlinear time-varying system.
In such a case, a preferred option is to choose a set of time-invariant PI controller parameters
from the estimated tuning regions in (12) and fix them for implementation, so as to facilitate the
subsequent set-point learning control design.

Remark 2 In case no desired PI controller parameters could be obtained for a prescribed ϱ in the
above Algorithm 1, one option is to increase ϱ until a set of satisfactory PI controller parameters
is obtained. Another option is to assess the ATE index for all computed PI controller parameters
within the estimated tuning regions and choose the optimal setting in terms of the minimum of
ATE. In addition to the ATE index, other performance indices, e.g., mean-square error and max-
imum absolute error, may also be used to evaluate the control performance for determining the PI
controller parameters. Note that all the corresponding ATE indices in the above tuning regions
could be computed offline, and hence the optimal setting of PI controller parameters are available
before online implementation.

Remark 3 The recently developed data-driven PID controller designs [31, 32, 33] cannot be applied
to determine the PI controller parameters or stabilizing regions of the PI controller for a batch
process described by (1) with unknown dynamics, since the upper bounds of partial derivatives of
f(·) with respect to y(t), y(t−1) and u(t) cannot be known in advance. This restriction is removed
from the new tuning algorithm.

4 Robust PI-ADDSPLC scheme

The new robust PI-ADDSPLC scheme is shown in Fig. 1, where the closed-loop PI control structure
is within the red dashed-line box, and the rest is the set-point learning control law together with
a gradient estimator and another learning gain estimator responsible for regulating the set-point
command of the closed-loop control structure from batch to batch, “MEMORY” denotes a storage
used to record output tracking error (ek(t)), set-point command (ysk(t)), process input (uk(t)),

process output (yk(t)) and gradient estimation (ϕ̂ϕϕk,k−1(t)) in the current batch, and provide the

historical batch information (ek−1, y
s
k−1, ∆uuuk−1, ∆yk−1, ϕ̂ϕϕk−1,k−2) together with the current batch

information (∆uk(t−1), ∆yk(t− 1), ∆yyysk(t− 1), ϕ̂ϕϕk,k−1(t)). Note that the closed-loop PI controller
is fixed for each batch run, and therefore independent of the set-point learning control for batch
performance optimization. Moreover, only the PI feedback control loop is executed in the initial
batch where the set-point command is directly set as the desired reference trajectory yd.

Based on the determined PI controller parameters in Section 3, the process input takes the
form

uk(t)=τPe
s
k(t)+τI

t∑
i=0

esk(i)=τesk(t)+τI

t−1∑
i=0

esk(i), (13)

where τ ≜ τP + τI, τP and τI are the PI controller parameters, and esk(t) is the set-point tracking
error defined by

esk(t) = ysk(t)− yk(t), (14)
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Figure 1: Schematic of the new PI-ADDSPLC design

which differs from the output tracking error ek(t).
In this paper, an adaptive set-point learning law is designed as follows

ysk(t) = ysk−1(t) + αθk(t)ek−1(t+ 1), (15)

where θk(t) is an adaptive set-point learning gain to be determined, and α is a user-specified tuning
parameter for regulating the batch-direction convergence speed of the learning system.

To estimate the learning gain θk(t) for control implementation, the following performance eval-
uation function is used

J2 (θk(t)) = |ek(t+ 1)|2 + λ |θk(t)− θk−1(t)|2 , (16)

where λ > 0 is a user-specified weighting factor to evaluate the impact from variation of θk(t)
along the batch direction, and therefore adjust the convergence speed of the parameter estimation
algorithm.

It follows from (13) and (14) that

∆uk(t) = τ(∆ysk(t)−∆yk(t)) + τI

t−1∑
i=0

(∆ysk(i)−∆yk(i))

= ταθk(t)ek−1(t+ 1)− τ∆yk(t)

+ τI

t−1∑
i=0

(∆ysk(i)−∆yk(i)).

(17)

Then, it follows from the definition of ek(t) that

ek(t+ 1) = yd(t+ 1)− yk(t+ 1)

= ek−1(t+ 1)−
t−1∑
j=0

ϕt
k,k−1(j)∆uk(j)− χk(t)

− ϕt
k,k−1(t)

{
ταθk(t)ek−1(t+ 1)− τ∆yk(t)

+ τI

t−1∑
i=0

(∆ysk(i)−∆yk(i))

}
.

(18)



Taking the first-order derivative of J2 (θk(t)) with respect to θk(t) and equating the result to
zero give

θk(t) = θk−1(t) +
ρνk(t)

λ+ ν2k(t)

{
ek−1(t+ 1)− χk(t)

− θk−1(t)νk(t)− τIϕ
t
k,k−1(t)

t−1∑
i=0

[∆ysk(i)−∆yk(i)]

−
t−1∑
i=0

ϕt
k,k−1(i)∆uk(i) + τϕt

k,k−1(t)∆yk(t)

}
,

(19)

where νk(t) ≜ ταϕt
k,k−1(t)ek−1(t+ 1), ρ ∈ (0, 2) is a tuning parameter to offer a flexible parameter

estimation algorithm.
It is seen from (19) that the increment of θk(t) cannot be realized since χk(t) and ϕt

k,k−1(i), i =
0, 1, . . . , t are unavailable in advance. To address this issue, the uncertainty term χk(t) is omitted
and the unknown parameter ϕt

k,k−1(i) is replaced by its estimate obtained by a parameter estimation
algorithm [37] along the batch direction, i.e.

ϕ̂ϕϕk,k−1(t) = ϕ̂ϕϕk−1,k−2(t) +
η∆uuuk−1(t)

µ+ ∥∆uuuk−1(t)∥2

×
(
∆yk−1(t+ 1)− ϕ̂ϕϕ

⊤
k−1,k−2(t)∆uuuk−1(t)

)
,

(20)

where ϕ̂ϕϕk,k−1(t) = [ϕ̂t
k,k−1(0), . . . , ϕ̂

t
k,k−1(t)] is the estimation of ϕϕϕk,k−1(t), µ > 0 and η ∈ (0, 2) are

two tuning parameters. Moreover, the boundedness of ϕ̂ϕϕk,k−1(t) was established in [37]. For ease of

the subsequent analysis, the upper bound of ϕ̂ϕϕk,k−1(t) is denoted by βϕ̂, i.e., supt∈ZN−1,k∈Z+

∣∣∣ϕ̂ϕϕk,k−1(t)
∣∣∣ ≤

βϕ̂.
In summary, the new set-point learning control algorithm named PI-ADDSPLC is given as

Algorithm 2.
In Algorithm 2, ε1 and ε2 are two small positive thresholds specified in practice. Note that

the resetting algorithms for ϕ̂ϕϕk,k−1(t) and θk(t) are used to improve the parameter estimation
performance, in particular for estimating time-varying parameters, as studied in the recent papers
[27] and [29].

Remark 4 The newly developed PI-ADDSLC scheme can be extended to the design of a PID-type
ADDSLC scheme, by rewriting a PID controller of the form uk(t) = τPe

s
k(t) + τI

∑t
i=0 e

s
k(i) +

τD[e
s
k(t)− esk(t− 1)] as uk(t) = (τP+ τI+ τD)e

s
k(t)+ (τI− τD)e

s
k(t− 1)+

∑t−2
i=0 e

s
k(i). Then the above

design can be straightforwardly applied, and hence the details are omitted.

5 Robust convergence and boundedness analysis of the PI-

ADDSPLC scheme

Nonrepetitive initial conditions and/or disturbances hinder or even jeopardize the convergence of
a data-driven set-point learning control scheme for a batch run. Moreover, it remains an open
problem in the literature to analyze the boundedness of set-point command and adaptive learning
gain, without the process modeling or any prior knowledge of the batch run. To ensure robust



Algorithm 2 (PI-ADDSPLC)

Input: Initial learning gain θ0(t), gradient vector ϕ̂ϕϕ0(t), control input u0(t), process output y0(t),
desired reference trajectory yd, PI controller parameters τP and τI, tuning parameters η, µ, ρ
and α, weighting factor λ, user specified thresholds ε1 and ε2, batch length N and maximum
batch number kmax.

Output: Process output and ATE index.
1: for k = 1, 2, . . . , kmax do
2: for t = 1, 2, . . . , N do
3: Update the gradient vector ϕ̂ϕϕk,k−1(t) by (20). If ∥ϕ̂ϕϕk,k−1(t)∥ ≤ ε1 or sign(ϕ̂ϕϕk,k−1(t)) ̸=

sign(ϕ̂ϕϕk,k−1(0)), ϕ̂ϕϕk,k−1(t) is reset as its initial value ϕ̂ϕϕ0(t);
4: Update the adaptive learning gain θk(t) by (19) with ϕt

k,k−1(i), i = 0, 1, . . . , t replaced by

its estimation ϕ̂t
k,k−1(i) and χk(t) set as zero. If |θk(t)| ≤ ε2 or sign(θk(t)) ̸= sign(θ0(t)),

θk(t) is reset as its initial value θ0(t);
5: Update the set-point command ysk(t) by (15) and compute the set-point tracking error

esk(t) by (14);
6: Apply the PI controller in (13) to a batch process in (1);
7: end for
8: Compute the output tracking error ek(t) and ATE index defined by ATE(k) =∑N

t=1 |ek(t)|/N ;
9: end for

convergence of output tracking error by the new PI-ADDSPLC scheme, sufficient conditions are
therefore established in the following theorem, which also guarantee the boundedness of set-point
command and adaptive learning gain along the batch direction.

Theorem 1 Consider a batch process described by (1) controlled by application of Algorithm 2
using (13) and (15) under Assumptions 1, 2 and 4. Then the bounded tracking objective in (2),
the bounded set-point command in (3), and the bounded adaptive learning gain in (15) hold, if the
tuning parameter α is properly taken such that

|τα| < 2

βϕι
, (21)

sign(τα) = sign(θ0(t)), (22)

where ι < ∞ is a uniform and attainable upper bound of the learning gain θk(t) for any t ∈ ZT

and k ∈ Z+.

Rewriting (18) gives
ek(t+ 1) = Ae

k(t)ek−1(t+ 1) + r1,k(t), (23)

where Ae
k(t) ≜ 1− ταϕt

k,k−1(t)θk(t) and

r1,k(t) ≜ −
t−1∑
j=0

ϕt
k,k−1(j)∆uk(j) + τϕt

k,k−1(t)∆yk(t)

− τIϕ
t
k,k−1(t)

t−1∑
j=0

(∆ysk(j)−∆yk(j))− χk(t).



Setting i = k − 1 and j = 0 in (5) leads to

yk−1(t+ 1) = y0(t+ 1) + ϕt
k−1,0(t)uk−1(t)

+

t−1∑
j=0

ϕt
k−1,0(j)uk−1(j)−

t∑
j=0

ϕt
k−1,0(j)u0(j)

+
t−1∑
j=0

υtk−1,0(j)[ωk−1(j)− ω0(j)]

+ [ωk−1(t)− ω0(t)] + ϑt
k−1,0(δk−1 − δ0).

(24)

Substituting (24) into the set-point updating law in (15) gives

ysk(t) = As
k(t)y

s
k−1(t) + r2,k(t), (25)

where As
k(t) ≜ 1− ατθk(t)ϕ

t
k−1,0(t) and

r2,k(t) ≜ αθk(t)

{
e0(t+ 1) + τϕt

k−1,0(t)yk−1(t)

− τIϕ
t
k−1,0(t)

t−1∑
i=0

[ysk−1(i)− yk−1(i)]

−
t−1∑
j=0

ϕt
k−1,0(j)uk−1(j) +

t∑
j=0

ϕt
k−1,0(j)u0(j)

− [ωk−1(t)− ω0(t)]− ϑt
k−1,0(δk−1 − δ0)

−
t−1∑
j=0

υt
k−1,0(j)[ωk−1(j)− ω0(j)]

}
.

Meanwhile, by substituting ϕt
k,k−1(t) with its estimation ϕ̂t

k,k−1(t) and letting χk(t) = 0, it follows
from (19) that

θk(t) =

[
1− ρν̂2

k(t)

λ+ ν̂2
k(t)

]
θk−1(t)

+
ρν̂k(t)

λ+ ν̂2
k(t)

ek−1(t+ 1) + r3,k(t),

(26)

where

r3,k(t) ≜
ρν̂k(t)

λ+ ν̂2
k(t)

{
− τIϕ̂

t
k,k−1(t)

t−1∑
i=0

[∆ysk(i)−∆yk(i)]

−
t−1∑
i=0

ϕ̂t
k,k−1(i)∆uk(i) + τ ϕ̂t

k,k−1(t)∆yk(t)

}
.

Next, the mathematical induction is adopted to prove the bounded convergence of the output
tracking error ek(t) along the batch direction, together with the boundedness of the adaptive
learning gain θk(t) and the real-time updated set-point command ysk(t) for any t ∈ ZN−1 and
k ∈ Z+.



Step (I). When t = 0, there is

|r3,k(0)| =
∣∣∣∣ ρν̂k(0)

λ+ ν̂2
k(0)

τ ϕ̂t
k,k−1(0)∆yk(0)

∣∣∣∣
≤ ρ

2
√
λ
|τ |βϕ̂β∆δ < ∞.

Moreover, the boundedness of the second term in the right-hand side of (26) holds for any t and
k since ∣∣∣∣ ρν̂k(t)

λ+ ν̂2
k(t)

ek−1(t+ 1)

∣∣∣∣ ≤
∣∣∣∣∣ ρταϕ̂t

k,k−1(t)e
2
k−1(t+ 1)

λ+ [ταϕ̂t
k,k−1(t)ek−1(t+ 1)]2

∣∣∣∣∣
≤

∣∣∣∣∣ ρταϕ̂t
k,k−1(t)e

2
k−1(t+ 1)

[ταϕ̂t
k,k−1(t)ek−1(t+ 1)]2

∣∣∣∣∣
=

∣∣∣∣∣ ρ

ταϕ̂t
k,k−1(t+ 1)

∣∣∣∣∣ ≤ ρ

τ |α|ε1
.

(27)

Owing to ρ ∈ (0, 2), it follows that∣∣∣∣1− ρν̂2
k(t)

λ+ ν̂2
k(t)

∣∣∣∣ < 1, ∀t ∈ ZN−1, k ∈ Z+. (28)

Also, it follows from (26) that θk(0) is bounded for any k ∈ Z+, satisfying supk∈Z+
|θk(0)| ≤

βθ(0, •) < ∞, where βθ(0) > 0 is a finite constant.
It is easily verified that

|r1,k(0)| =
∣∣τϕt

k,k−1(0)∆yk(0)− χk(0)
∣∣

≤ |τ |βϕβ∆δ + βχ(•) < ∞.

By selecting ι = βθ(0, •), it follows from the conditions in (21) and (22) that |Ae
k(0)| < 1 for

any k ∈ Z+, which implies that the bounded convergence of ek(1) along the batch direction is
guaranteed and satisfies

sup
k∈Z+

|ek(1)| ≤ βe(1, •),

lim sup
k→∞

|ek(1)| ≤ βesup(1, •),

where βe(1, •) and βesup(1, •) with βe(1, •) > βesup(1, •) > 0 are two finite constants related to the
upper bound of r1,k(0) and hence are dependent on β∆ω and β∆δ.

Consequently, there are
|∆ysk(0)| = |αθk(0)ek−1(1)|

≤ |α|βθ(0, •)βe(1, •) < ∞
and

|∆uk(0)| = |τ(∆ysk(0)−∆yk(0))|
≤ |τ |

[
|α|βθ(0, •)βe(1, •) + β∆δ

]
< ∞.



Based on the boundedness of θk(0) and ek(1), it follows by using Assumptions 1, 4 and Lemma 1
that

|r2,k(0)| =
∣∣∣αθk(0){e0(1) + τϕt

k−1,0(0)yk−1(0)

+ ϕt
k−1,0(0)u0(0)− [ωk−1(t)− ω0(0)]

− ϑt
k−1,0(δk−1 − δ0)

}∣∣∣
≤ |α|βθ(0, •)

{
βe(1, •) + |τ |βϕ(|y0|+ βδ)

+ 2(βω + βϕβδ)
}
< ∞, ∀k ∈ Z+.

Using the conditions in (21) and (22) again with ι = βθ(0, •), it follows that |As
k(0)| < 1 for any

k ∈ Z+, and the boundedness of ysk(0) follows immediately, i.e., supk∈Z+
|ysk(0)| ≤ βs(0, •) < ∞,

where βs(0, •) > 0 is a finite constant.
Step (II). Suppose that for any t ∈ ZT−1 with T ∈ ZN−1, the following conditions hold

sup
k∈Z+

|θk(t)| ≤ βθ(t, •) < ∞, (29)

sup
k∈Z+

|ek(t+ 1)| ≤ βe(t+ 1, •) < ∞, (30)

lim sup
k∈Z+

|ek(t+ 1)| ≤ βesup(t+ 1, •) < ∞, (31)

sup
k∈Z+

|ysk(t)| ≤ βs(t, •) < ∞, (32)

where βθ(t, •), βs(t, •), βe(t+1, •) and βesup(t+1, •) for any t ∈ ZT−1 are finite constants satisfying
βe(t+ 1, •) > βesup(t+ 1, •) > 0 and dependent on β∆ω and β∆δ.

When it comes to the time t = T , it follows that

|r3,k(T )| ≤
ρ|ν̂k(T )|

2
√
λ|ν̂k(T )|

∣∣∣∣∣τIϕ̂t
k,k−1(T )

T−1∑
i=0

[∆ysk(t)−∆yk(i)]

+
T−1∑
i=0

ϕ̂t
k,k−1(i)∆uk(i)− τ ϕ̂t

k,k−1(T )∆yk(T )

∣∣∣∣∣
≤ ρ

2
√
λ

{
|τI|βϕ̂T max

i∈ZT−1

[
|∆ysk(i)|+ |∆yk(i)|

]
+ Tβϕ̂ max

i∈ZT−1

|∆uk(i)|+ |τ |βϕ̂|∆yk(T )|

}
.



Additionally, it follows from (29)-(32) that

max
i∈ZT−1

|∆ysk(i)| ≤ 2βmax
s,T−1(•),

max
i∈ZT−1

|∆yk(i)| ≤ 2βmax
e,T−1(•),

max
i∈ZT−1

|∆uk(i)| ≤ 2|τ | max
i∈ZT−1

{βs(i, •) + βe(i, •)}

+ max
i∈ZT−1

2|τI|i max
j∈Zi−1

{βs(j, •) + βe(j, •)}

≤ 2
[
|τ |+ |τI|(T − 1)

]
×

(
βmax
s,T−1(•) + βmax

e,T−1(•)
)
,

where
βmax
s,T−1(•) ≜ max

i∈ZT−1

βs(i, •), βmax
e,T−1(•) ≜ max

i∈ZT−1

βe(i, •).

Therefore

|r3,k(T )| ≤
ρ

2
√
λ

[
2|τI|βϕ̂T (β

max
s,T−1(•) + βmax

e,T−1(•))

+ 2|τ |βϕ̂βe(T, •) + 2Tβϕ̂

[
|τ |+ |τI|(T − 1)

]
× (βmax

s,T−1(•) + βmax
e,T−1(•))

]
< ∞,

(33)

and hence r3,k(T ) is bounded for any k ∈ Z+, and its upper bound is related to β∆ω and β∆δ.
Based on the inequalities (27) and (28), it follows from (26) and (33) that supk∈Z+

|θk(T )| ≤
βθ(T, •) < ∞, where βθ(T, •) is a finite constant. Consequently, it is derived that

|r1,k(T )| ≤ βϕ

T−1∑
j=0

|∆uk(j)|+ |τ |βϕ|∆yk(T )|+ |χk(T )|

+ |τI|βϕ

T−1∑
j=0

[
|∆ysk(j) + |∆yk(j)|

]
≤ 2βϕT (|τ |+ |τI|(T − 1))

× (βmax
s,T−1(•) + βmax

e,T−1(•)) + 2|τ |βϕβe(T, •)
+ 2|τI|βϕT

(
βmax
s,T−1(•) + βmax

e,T−1(•)
)
+ βχ < ∞.

Similarly, using the conditions in (21) and (22) with ι = βθ(T, •) gives |Ae
k(T )| < 1 for any k ∈ Z+,

which guarantees the bounded convergence of ek(T + 1) for any k ∈ Z+, i.e.

sup
k∈Z+

ek(T + 1) ≤ βe(T + 1, •),

lim sup
k→∞

|ek(T + 1)| ≤ βesup(T + 1, •) < βe(T + 1, •),

where βe(T +1, •) and βesup(T +1, •) are two finite positive constants dependent on β∆ω and β∆δ.
Hence, there are

|∆ysk(T )| = |αθk(T )ek−1(T + 1)|
≤ |α|βθ(T, •)βe(T + 1, •) < ∞



and

|∆uk(T )| =

∣∣∣∣∣τ∆esk(T ) + τI

T−1∑
i=0

∆esk(i)

∣∣∣∣∣
≤ |τ |

[
|α|βθ(T, •)βe(T + 1, •) + 2βe(T, •)

]
+ 2|τI|T

(
βmax
s,T−1(•) + βmax

e,T−1(•)
)
< ∞.

Using the boundedness of yk−1(t) for any t ∈ ZT and uk−1(t) for any t ∈ ZT−1, respectively, i.e.

|yk−1(t)| ≤ |yd(t)|+ |ek−1(t)| ≤ βd + βmax
e,T (•),

|uk−1(t)| ≤ |τ |(|ysk−1(t)|+ |yk−1(t)|)

+ |τI|
t−1∑
i=0

[|ysk−1(i)|+ |yk−1(i)|]

≤ (|τ |+ (T − 1)|τI|)(βmax
s,T−1(•) + βd + βmax

e,T (•)),

where βmax
e,T (•) ≜ maxi∈ZT

βe(i, •), it follows that

|r2,k(T )| ≤ |α|βθ(T, •)
[
βe(T + 1, •) + |τ |βϕ(βd + βmax

e,T (•))

+ βϕ|τI|T (βmax
s,T−1(•) + βd + βmax

e,T (•))
+ βϕT (|τ |+ (T − 1)|τI|)
× (βmax

s,T−1(•) + βd + βmax
e,T (•))

+ 2(βω + Tβϕβω + βϕβδ)
]
< ∞,

which, together with the conditions in (21) and (22) with ι = βθ(T, •), guarantees |As
k(T )| < 1

for any k ∈ Z+. Therefore, ysk(T ) is bounded and satisfies supk∈Z+
|ysk(T )| ≤ βs(T, •), where

βs(T, •) > 0 is a finite constant.
Hence, according to the mathematical induction, the conclusion of this theorem is true. Since

t ∈ ZT is finite, a uniform threshold of ι = maxi∈ZT
βθ(i, •) can be taken. This completes the

proof.

Remark 5 The parameter α plays a crucial role in the conditions of (21) and (22) in Theorem 1,
which is the only tuning parameter for the set-point learning control since both ϕϕϕt

k,k−1(t) and θk(t)
are iteratively estimated. Moreover, the bounded control input required by the developed DDILC
methods (e.g., [25, 26, 27, 28]) is obviously guaranteed by the new PI-ADDSPLC scheme, based
on the above designed PI controller in (13) and the boundedness of output tracking error and the
set-point command as concluded by Theorem 1.

If both nonrepetitive disturbances and initial condition shifts converge along the batch direction,
i.e.

lim
k→∞

[ωk(t)− ωk−1(t)] = 0, ∀t ∈ ZN−1,

lim
k→∞

(δk − δk−1) = 0,
(34)

perfect output tracking could be realized despite the presence of nonrepetitive disturbances and
initial conditions, which is clarified by the following corollary.
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Figure 2: Schematic of the new IESO based PI-ADDSPLC scheme

Corollary 1 Consider a batch process described by (1) controlled by application of Algorithm
2 using (13) and (15) under Assumptions 1, 2 and the condition in (34). Then, asymptotic
convergence of the output tracking error together with the boundedness of the real-time updated set-
point command in (3) and the adaptive learning gain in (15) is guaranteed, if the tuning parameter
α is taken such that the conditions in (21) and (22) are satisfied.

Using (34), it follows from (7) that

lim
k→∞

χk(t) = 0. (35)

The rest of the proof follows similar steps to those for Theorem 1, and therefore is omitted.

6 IESO based PI-ADDSPLC scheme

Although the PI-ADDSPLC scheme developed in Section 4 has the capability to maintain robust
convergence and boundedness of the resulting ILC system, the adverse effects caused by nonrepet-
itive uncertainties cannot be actively suppressed. Motivated by the time-domain ESO design in
ADRC [34], another IESO based PI-ADDSPLC scheme shown in Fig. 2 is further developed in this
section by inserting an IESO into the PI-ADDSPLC scheme to proactively estimate and counteract
χk(t) that was not considered in the PI-ADDSPLC scheme, for better disturbance rejection but
at the cost of implemental complexity. Note that the adopted IESO can estimate the uncertainty
term χk(t) along the batch direction, by only using the available process data as shown in Fig. 2
rather than any model information as required in other recent research [38].

For analysis, the following assumption is made without loss of generality.

Assumption 5 The variation of the set-point command ysk(t) along the batch direction is bounded,
i.e., |∆ysk(t)| ≤ δsp for any t ∈ ZN−1, k ∈ Z+, where δsp > 0 is a finite constant.

By augmenting the so-called total disturbance χk(t) as an extended state in (7), it follows that{
Yk(t+ 1) = AYk−1(t+ 1) + Iϕϕϕ⊤

k,k−1(t)∆uuuk(t) + Ωk(t),

yk−1(t+ 1) = CYk−1(t+ 1),
(36)



where C = [1 0], Yk(t+ 1) = [yk(t+ 1) χk(t)]
⊤ and

A =

[
1 1
0 1

]
, I =

[
1
0

]
, Ωk(t) =

[
∆χk(t)
∆χk(t)

]
.

Note that Ωk(t) is bounded for any t ∈ ZN−1 and k ∈ Z+ due to the boundedness of χk(t), and is
assumed to satisfy supt∈ZN−1,k∈Z+

|Ωk(t)| ≤ βΩ(•), where βΩ(•) is a finite constant dependent on
β∆ω and β∆δ.

An IESO for the augmented system in (36) is designed as

Ŷk(t+ 1) = AŶk−1(t+ 1) + Iϕ̂ϕϕ
⊤
k,k−1(t)∆uuuk(t)

+ L
(
yk−1(t+ 1)− CŶk−1(t+ 1)

)
,

(37)

where L = [l1 l2]
⊤ is the observer gain vector, Ŷk−1(t+1) = [ŷk−1(t+1) χ̂k−1(t)]

⊤ is the estimation

of Yk−1(t+1), and ϕ̂ϕϕk,k−1(t) is the estimation of ϕϕϕk,k−1(t) obtained from the parameter estimation
in (20).

By substituting ϕt
k,k−1(i), i = 0, 1, . . . , t and χk(t) with ϕ̂t

k,k−1(i) and χ̂k(t) in (19), a new
updating law for the adaptive learning gain is established below

θk(t) = θk−1(t) +
ρν̂k(t)

λ+ ν̂2
k(t)

×{
ek−1(t+ 1)− θk−1(t)ν̂k(t)− χ̂k(t)

−
t−1∑
j=0

ϕ̂t
k,k−1(j)∆uk(j) + τ ϕ̂t

k,k−1(t)∆yk(t)

− τIϕ̂
t
k,k−1(t)

t−1∑
i=0

(∆ysk(i)−∆yk(i))

}
.

(38)

Correspondingly, the set-point learning law is established as

ysk(t) = ysk−1(t) +

{
ζk(t), if |ζk(t)| ≤ δsp,

δsp sign(ζk(t)), otherwise,
(39)

where ζk(t) ≜ αθk(t)ek−1(t+ 1) and sign(·) is the sign function.
The new IESO based PI-ADDSPLC scheme is summarized in Algorithm 3.
The following theorem establishes sufficient conditions to ensure robust convergence of the

output tracking error when Algorithm 3 is applied in the presence of nonrepetitive uncertainties.

Theorem 2 Consider a batch process described by (1) controlled by application of Algorithm 3
using (13) and (15) under Assumptions 1, 2, 4 and 5. Then the bounded tracking objective in (2),
the bounded set-point command in (3), the bounded adaptive learning gain in (15) and the bounded
convergence of IESO in (37) hold, if the tuning parameter α is taken such that the conditions in
(21) and (22) are satisfied, and the IESO gains l1 and l2 are selected to satisfy

max

{
|2−l1+

√
l21−4l2|

2
,
|2−l1−

√
l21−4l2|

2

}
< 1. (40)



Algorithm 3 (IESO based PI-ADDSPLC)

Input: Initial learning gain θ0(t), gradient vector ϕ̂ϕϕ0(t), control input u0(t), process output y0(t),
IESO state Ŷ0(t), desired reference trajectory yd, PI controller parameters τP and τI, observer
gains l1 and l2, tuning parameters η, µ, ρ and α, weighting factor λ, user specified thresholds
ε1, ε2 and δsp, batch length N and maximum batch number kmax.

Output: Process output and ATE index.
1: for k = 1, 2, . . . , kmax do
2: for t = 1, 2, . . . , N do
3: Update the gradient vector ϕ̂ϕϕk,k−1(t) by (20). If ∥ϕ̂ϕϕk,k−1(t)∥ ≤ ε1 or sign(ϕ̂ϕϕk,k−1(t)) ̸=

sign(ϕ̂ϕϕk,k−1(0)), ϕ̂ϕϕk,k−1(t) is reset as its initial value ϕ̂ϕϕ0(t);

4: Update the IESO state Ŷk(t+ 1) by (37);
5: Update the adaptive learning gain θk(t) by (38). If |θk(t)| ≤ ε2 or sign(θk(t)) ̸= sign(θ0(t)),

θk(t) is reset as its initial value θ0(t);
6: Update the set-point command ysk(t) by (39) and compute the set-point tracking error

esk(t) by (14);
7: Apply the PI controller in (13) to a batch process in (1);
8: end for
9: Compute the output tracking error ek(t) and ATE index;
10: end for

The boundedness of χk(t) for any t ∈ ZN−1 and k ∈ Z+ ensures that ϕ̂ϕϕk,k−1(t) is bounded, for
which the proof is similar to that of Theorem 6 in [39] and thus is omitted.

On setting Ỹk(t) = Yk(t)− Ŷk(t). The dynamics of the IESO estimation error is obtained as

Ỹk(t+ 1) = (A− LC)Ỹk−1(t+ 1)

+ Iϕ̃ϕϕ
⊤
k,k−1(t)∆uuuk(t) + Ωk(t),

(41)

where ϕ̃ϕϕk,k−1(t) ≜ ϕϕϕk,k−1(t)−ϕ̂ϕϕk,k−1(t). Note that the boundedness of ϕϕϕk,k−1(t) and ϕ̂ϕϕk,k−1(t) ensures

that ϕ̃ϕϕk,k−1(t) is bounded, and assumed to satisfy ∥ϕ̃ϕϕk,k−1(t)∥ ≤ βϕ̃ < ∞ for any t ∈ ZN−1 and
k ∈ Z+, where βϕ̃ is a finite constant.

Applying the PI control law in (13) to (41) gives

Ỹk(t+ 1) = (A− LC)Ỹk−1(t+ 1) + r4,k(t), (42)

where
r4,k(t) = Iτ ϕ̃t

k,k−1(t)(∆ysk(t)−∆yk(t))

+ IτIϕ̃t
k,k−1(t)

t−1∑
i=0

[∆ysk(i)−∆yk(t)]

+ I
t−1∑
j=0

ϕ̃t
k,k−1(j)∆uk(j) + Ωk(t).

Let hk(t) = ∆ysk(t)/ζk(t). Then it follows that hk(t) = 1 if |ζk(t)| ≤ δsp, and hk(t) ∈ (0, 1) if
|ζk(t)| > δsp. Hence, the dynamics of the output tracking error along the batch direction is given
by

ek(t+ 1) = Ae

k(t)ek−1(t+ 1) + r1,k(t), (43)



where Ae

k(t) ≜ 1− ταhk(t)ϕ
t
k,k−1(t)θk(t) and r1,k(t) is described as per (23).

Moreover, one has

ysk(t) = ysk−1(t) + hk(t)ζk(t)

= ysk−1(t) + hk(t)αθk(t)ek−1(t+ 1)

= ysk−1(t) + hk(t)αθk(t)[yd(t+ 1)− yk−1(t+ 1)],

which can be combined with (24) to give

ysk(t) = As

k(t)y
s
k−1(t) + hk(t)r2,k(t), (44)

where As

k(t) ≜ 1− ατhk(t)θk(t)ϕ
t
k−1,0(t) and r2,k(t) is described as per (25).

It follows from (38) that the updating of θk(t) is given by

θk(t) =

[
1− ρν̂2

k(t)

λ+ ν̂2
k(t)

]
θk−1(t) +

ρν̂k(t)

λ+ ν̂2
k(t)

ek−1(t+ 1)

+ r3,k(t)−
ρν̂k(t)

λ+ ν̂2
k(t)

χ̂k(t),

(45)

where r3,k(t) is described as per (26).
As in the proof of Theorem 1, the mathematical induction is used to prove the main conclusion

of this theorem as follows.
Step (I). Let t = 0, and it follows that

r4,k(0) = Iτ ϕ̃t
k,k−1(0)[∆ysk(0)−∆yk(0)] + Ωk(0).

Since ∆yk(0) = yk(0)− yk−1(0) = δk − δk−1 and supt∈ZN−1,k∈Z+
|∆ysk(0)| ≤ δsp, one has

|r4,k(0)| ≤ |τ |βϕ̃(δsp + β∆δ) + βΩ(•) < ∞. (46)

Therefore, the boundedness convergence of Ỹk(1) is guaranteed under the condition in (40), and
hence A − LC is Schur stable. This fact further implies that χ̂k(0) is bounded for any k ∈ Z+,
satisfying supk∈Z+

|χ̂k(0)| ≤ βχ̂(0, •) < ∞, where βχ̂(0, •) is a finite constant related to β∆ω and
β∆δ.

By the boundedness of χ̂k(0), it follows that∣∣∣∣r3,k(0)− ρν̂k(0)

λ+ ν̂2
k(0)

χ̂k(0)

∣∣∣∣
=

∣∣∣∣ ρν̂k(0)

λ+ ν̂2
k(0)

[
τ ϕ̂t

k,k−1(0)∆yk(0)− χ̂k(0)
]∣∣∣∣

≤ ρ

2
√
λ

(
βχ̂(0, •) + |τ |βϕ̂β∆δ

)
< ∞,

which, together with the boundeness of ρν̂k(t)

λ+ν̂2k(t)
ek−1(t+1), see Theorem 1, and the condition in (28),

guarantees that θk(0) is bounded and thus is assumed to satisfy supk∈Z+
|θk(0)| ≤ βθ(0, •) < ∞,

where βθ(0, •) is a finite constant related to β∆ω and β∆δ. Hence



|r1,k(0)| ≤ |τϕt
k,k−1(0)∆yk(0)− χk(0)|

≤ βχ(•) + |τ |βϕβ∆δ < ∞, ∀k ∈ Z+.

Using the conditions given in (21) and (22) with ι = βθ(0, •), it follows that |Ae

k(0)| < 1 for
any k ∈ Z+, which guarantees that ek(1) is bounded and convergent along the batch direction, i.e.

sup
k∈Z+

|ek(1)| ≤ βe(1, •),

lim sup
k→∞

|ek(1)| ≤ βesup(1, •) < βe(1, •),

where βe(1, •) and βesup(1, •) are two finite constants related to β∆ω and β∆δ. As a consequence,
it follows that

|hk(0)r2,k(0)| =
∣∣∣αhk(0)θk(0)

{
e0(1) + τϕt

k−1,0(0)yk−1(0)

+ ϕt
k−1,0(0)u0(0)− [ωk−1(0)− ω0(0)]

−ϑt
k−1,0(δk−1 − δ0)

}∣∣∣
≤ |α|βθ(0, •)

[
βe(1, •) + |τ |βϕ(|y0|+ βδ)

+ 2βw + 2βϕβδ

]
< ∞.

Using the conditions in (21) and (22) with ι = βθ(0, •) again, it follows that |A
s

k(0)| < 1 for any k ∈
Z+. Therefore, y

s
k(0) is guaranteed to be bounded and thus is assumed to satisfy supk∈Z+

|ysk(0)| ≤
βs(0, •) < ∞, where βs(0, •) is a finite constant related to β∆ω and β∆δ.

Step (II). Suppose that for any t ∈ ZT−1 with T ∈ ZN−1, the bounded convergence of Ỹk(t),
θk(t), ek(t+ 1) and ysk(t) is satisfied and

sup
k∈Z+

|Ỹk(t)| ≤ βỸ(t, •) < ∞,

sup
k∈Z+

|θk(t)| ≤ βθ(t, •) < ∞,

sup
k∈Z+

|ek(t+ 1)| ≤ βe(t+ 1, •) < ∞,

lim sup
k→∞

|ek(t+ 1)| ≤ βesup(t+ 1, •) < βe(t+ 1, •),

sup
k∈Z+

|ysk(t)| ≤ βs(t, •) < ∞,

where βỸ(t, •), βθ(t, •), βe(t + 1, •), βesup(t + 1, •) and βs(t, •) are finite constants related to β∆ω

and β∆δ.
When it comes to the time t = T , one has

|r4,k(T )| ≤ |τ |βϕ̃(δsp + 2βmax
e,T (•)) + βΩ(•)

+ 2|τI|βϕ̃T (β
max
s,T−1(•) + βmax

e,T−1(•))
+2βϕ̃T (|τ |+|τI|T )(βmax

s,T−1(•)+βmax
e,T−1(•)) < ∞,

where βmax
e,T−1(•) ≜ maxt∈ZT−1

βe(t, •), and hence the bounded convergence of Ỹk(T + 1) is guar-
anteed. In turn, χ̂k(T ) is bounded and is assumed to satisfy supk∈Z+

|χ̂k(T )| ≤ βχ̂(T, •), where
βχ̂(T, ) is a finite constant related to β∆ω and β∆δ.



Moreover, it follows from (45) that∣∣∣∣r3,k(t)− ρν̂k(t)

λ+ ν̂2
k(t)

χ̂k(t)

∣∣∣∣
≤ ρ

2
√
λ

{
βχ̂(T, •) + 2|τ |βϕ̂βe(T, •) + 2Tβϕ̂

× (βmax
s,T−1(•) + βmax

e,T−1(•)) [|τ |+ (1 + T )|τI|]
}
< ∞,

which, together with the boundedness of ρν̂k(t)

λ+ν̂2k(t)
ek−1(t + 1), ensures the boundedness of θk(T ),

satisfying supk∈Z+
|θk(T )| ≤ βθ(T, •) < ∞, where βθ(T, •) is a finite constant. Hence

|r1,k(T )| ≤

∣∣∣∣∣−
T−1∑
j=0

ϕt
k,k−1(j)∆uk(j)

− χk(T ) + τϕt
k,k−1(T )∆yk(T )

− τIϕ
t
k,k−1(T )

T−1∑
i=0

[∆ysk(i)−∆yk(i)]

∣∣∣∣∣
≤ 2Tβϕ(|τ |+ |τI|T )(βmax

s,T−1(•) + βmax
e,T−1(•))

+ βχ + 2|τ |βϕβe(T, •)
+ 2|τI|βϕT (β

max
s,T−1(•) + βmax

e,T−1(•)) < ∞.

Using the conditions in (21) and (22) with ι = βθ(T, •), it follows that |Ae
k(T )| < 1 for any k ∈ Z+,

indicating the bounded convergence of the output tracking error ek(T+1) along the batch direction,
i.e.

sup
k∈Z+

|ek(T + 1)| ≤ βe(T + 1, •) < ∞,

lim sup
k→∞

|ek(T + 1)| ≤ βesup(T + 1, •) < βe(T + 1, •).

The boundedness of ek(T + 1) together with the fact that |yk−1(i)| ≤ βd + βmax
e,T−1(•) and

|ysk−1(i)| ≤ βmax
s,T−1(•) for any i ∈ ZT−1 ensures that

|hk(T )r2,k(T )|

≤ |α|βθ(T )
{
βe(T + 1, •) + |τ |βϕ[βd + βe(T, •)]

+ |τI|βϕT (β
max
s,T−1(•) + βd + βmax

e,T−1(•))
+ βϕT [|τ |+ (T − 1)|τI|] (βmax

s,T−1(•) + βd + βmax
e,T−1(•))

+ 2Tβϕβw + 2βw + 2βϕβδ

}
< ∞.

Based on the conditions in (21) and (22) with ι = βθ(T, •), it follows |As
k(T )| < 1 for any k ∈

Z+. Therefore, the bounded convergence of ysk(T ) is guaranteed and hence is assumed to satisfy
supk∈Z+

|ysk(T )| ≤ βs(T, •), where βs(T, •) > 0 is a finite constant related to β∆ω and β∆δ.
By the mathematical induction, the conclusion in Theorem 2 follows immediately. Since the

time duration is finite for the batch operation, a uniform threshold of ι = maxi∈ZT
βθ(i, •) can be

taken.This completes the proof.



Table 1: Parameter settings of different methods for Example 1
Parameters Proposed IDL-iAILC OAILC

Feedback controller
τP = 0.01
τI = 0.46

K = 0.15 —

Learning controller

η = 0.1
µ = 0.6
ρ = 1
λ = 1
α = 0.7

ε1 = 1e− 7
ε1 = 1e− 7

η = 0.1
µ = 0.6
ηnl = 1
µnl = 1
α = 3.6

ε2 = 1e− 7
ε3 = 1e− 7

λ = 1
µ1 = 1

µ2 = 0.001
γ1 = 0.8
γ2 = 0.16
γ3 = 0.04
ε = 0.01

Initial conditions
ϕ̂0(t) = 1
θ0(t) = 1

ϕ̂0(t) = 1
θ0(t) = 1

θ̂0(t) = 1

Remark 6 The sufficient conditions in Theorem 2 ensure not only the bounded convergence of
output tracking error, the bounded set-point command and adaptive learning gain, but also the
bounded convergence of IESO along the batch direction. Moreover, the sufficient condition in (40)
for the bounded convergence of IESO is independent of those in (21) and (22), thus facilitating the
parameter tuning of IESO.

7 Illustrative examples

Two illustrative examples from the literature are used to verify and compare the new designs in
this paper with the recently developed DDILC methods. In both examples, the process models
are merely used to generate I/O data for control design.

Example 1 Consider an unknown nonlinear time-varying system studied in [21, 29]

yk(t+ 1) =


yk(t)

1+y2k(t)
+ u3

k(t) + ωk(t), t ∈ [0, 50],
yk(t)yk(t−1)yk(t−2)uk(t−1)[yk(t−2)−1]+a(t)uk(t)

1+y2k(t−1)+y2k(t−2)

+ωk(t), t ∈ (50, 100],

where a(t) = round(t/50) + 1, ωk(t) = 0.2sin(t/70 + k/50) + δ1,k(t) and yk(0) = −1 + δk, δ1,k(t)
and δk are nonrepetitive and vary randomly within [−0.05, 0.05]. Note that the aforementioned
Assumptions 2 and 3 are obviously satisfied owing to no abrupt changes in the system inputs and
outputs. Besides, Assumption 4 is also satisfied under the above disturbances and initial conditions.

The desired reference trajectory is the same as that in [29]

yd(t+ 1) =


0.5× (−1)round(t/10), t ∈ [0, 30],

0.5sin(tπ/10) + 0.3cos(tπ/10), t ∈ (30, 70],

0.5× (−1)round(t/10), t ∈ (70, 100].

In the case when λt = 0.15, ρt = 0.75, ηt = 1, µt = 0.2 and εt = 10−8 in (9) and (11) for
validation, the tuning regions of the PI controller parameters are determined as τP ∈ [0.01, 0.87]
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Figure 3: Tracking results by the new design applied to Example 1 in the absence of external
disturbances and initial shifts.
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Figure 4: Plot of ATE indices by different methods and the set-point command assessed by
max1≤t≤N−1 |ysk(t)| for the new design applied to Example 1 in the absence of external distur-
bances and initial shifts.

and τI ∈ [0.30, 0.97]. Applying Algorithm 1 with ϱ = 0.3 and ∆τP = ∆τI = 0.01, a set of desired
PI controller parameters, τP = 0.01 and τI = 0.46, can then be obtained. The parameter settings of
the proposed PI-ADDSPLC scheme are listed in Table 1. Similarly, the recently developed iterative
dynamic linearization-based indirect adaptive ILC (IDL-iAILC) in [29] and the optimization-based
adaptive ILC (OAILC) [25] are also applied for comparison, for which the corresponding parameter
settings are also listed in Table 1. Note that the iAILC method given in [29] cannot be applied to
nonlinear processes and therefore is not considered herein.

Figs. 3 and 4 show the tracking results and the corresponding ATE indices together with the set-
point command assessed by max1≤t≤N−1 |ysk(t)|, respectively, in the absence of external disturbances
and initial shifts. It is seen that perfect tracking is almost realized after 20 batches by the new PI-
ADDSPLC scheme. In contrast, nearly 80 batches are required to achieve the similar tracking



Figure 5: Evolutions of the derivative estimation ϕ̂k,k−1(t) and adaptive learning gain θk(t) by the
new design applied to Example 1 in the absence of external disturbances and initial shifts.

precision by the OAILC design in [25], and the IDL-iAILC method in [29] leads to relatively
larger steady-state tracking error along the batch direction. In addition, the evolutions of the
derivative estimation ϕ̂k(t) and the adaptive learning gain θk(t) shown in Fig. 5 demonstrate their
boundedness along both the time and batch directions, which may be used to roughly estimate a
feasible region of the tuning parameter α as (0, 1.75). Therefore, it is reasonable to select α = 0.7
for implementation.

In the presence of nonrepetitive disturbance ωk(t) and initial shifts yk(0), the new IESO based
PI-ADDSPLC design is also evaluated, where the IESO gains are taken as l1 = 0.4, l2 = 0.03
to satisfy the premise in (40), a constraint on ∆ysk(t) is set as δsp = 10, and the remaining
parameters are taken as those in the nominal case. The resulting ATE indices and the set-point
command assessed by max1≤t≤N−1 |ysk(t)| are shown in Fig. 6. It is seen that both the tracking speed
and steady-state tracking error by the proposed two new designs are evidently better than those by
OAILC in [25] and IDL-iAILC [29]. Moreover, further improved tracking performance is obtained
by the new IESO based PI-ADDSPLC design compared to PI-ADDSPLC.

Example 2 Consider an industrial injection molding process studied in [8, 17, 18, 25, 35], for
which a model used to generate the process data is

yk(t+ 1) = 1.607yk(t)− 0.6086yk(t− 1)

+ 1.239uk(t)− 0.9282uk(t− 1) + ωk(t),

where ωk(t) = 10 sin(t/10 + k/30) + δ1,k(t) and the initial process output is taken as yk(0) = δ2,k,
δ1,k(t) and δ2,k represent uncertain parameters randomly varying in the interval [−1, 1]. It is easy
to verify that the Assumptions 2-4 are satisfied in this example. The desired reference trajectory is

yd(t) =

{
150, 0 ≤ t ≤ 50,

300, 51 ≤ t ≤ 100.
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Figure 6: Plot of ATE indices by different methods and the set-point command assessed by
max1≤t≤N−1 |ysk(t)| for the new designs applied to Example 1 with nonrepetitive uncertainties.

Table 2: Parameter settings of different methods for Example 2
Parameters Proposed iAILC IDL-iAILC OAILC

FC
τP = 0.44
τI = 0.5

K = 1 K = 1 —

LC

η = 0.01
µ = 2
ρ = 0.1
λ = 1
α = 0.1

ε1 = 1e−7
ε1 = 1e−7

ηl = 0.01
µl = 2
α = 0.1

ε1 = 1e−7

η = 0.01
µ = 2

ηnl = 0.1
µnl = 1
α = 0.1

ε2 = 1e−7
ε3 = 1e−7

λ = 1
µ1 = 1

µ2 = 0.001
γ1 = 0.95
γ2 = 0.05
ε = 1e−3

IC
ϕ̂0(t) = 1
θ0(t) = 1

θ0(t) = 1
ϕ̂0(t) = 1
θ0(t) = 1

θ̂0(t) = 1

* FC, LC and IC represent feedback controller, learning con-
troller and initial conditions, respectively.

In the case when λt = 1, ρt = 1, ηt = 1, µt = 1 and εt = 10−8 are taken in (9) and (11) for
validation, the tuning regions of PI controller parameters are determined as τP ∈ [0.14, 0.5] and
τI ∈ [0.48, 0.5]. Note that there are two groups of steady-state values of the PI controller parameters,
i.e., τP = 0.34, τI = 0.48 and τP = 0.44, τI = 0.5, due to the piecewise function structure of the
desired reference trajectory. By comparing the corresponding ATE indices when applying these two
groups of PI controller parameters, τP = 0.44 and τI = 0.5 are used for the set-point learning
scheme in this example.

For clarity, the parameter settings in the new PI-ADDSPLC scheme are listed in Table 2,
where the PI controller parameters indicate their steady-state values. For comparison, the recently
developed indirect adaptive ILC (iAILC) and IDL-iAILC designs in [29] along with OAILC in [25]
are also performed. The corresponding parameter settings for these data-driven control methods in



terms of the guidelines given therein are also listed in Table 2.
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Figure 7: Tracking results by the new design applied to Example 2 in the absence of external
disturbances and initial shifts.
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Figure 8: Plot of ATE indices by different methods and the set-point command assessed by
max1≤t≤N−1 |ysk(t)| for the new design applied to Example 2 in the absence of external distur-
bances and initial shifts.

In the absence of external disturbances and initial shifts, i.e., ωk(t) = 0 and yk(0) = 0, the
tracking results are shown in Fig. 7. Correspondingly, the ATE indices by different methods and
the set-point command assessed by max1≤t≤N−1 |ysk(t)| are plotted in Fig. 8. It is seen that perfect
tracking can be achieved after 10 batches by the new design, while the tracking speed is obviously
faster than those of iAILC and IDL-iAILC [29] and OAILC [25]. Moreover, the bounded set-point
command is guaranteed, as shown in the bottom plot of Fig. 8.

Note that the tracking error in the initial batch run by the new design is significantly reduced
in contrast to the existing iAILC and IDL-iAILC methods in [29] and OAILC method in [25].
Meanwhile, the evolutions of the derivative estimation ϕ̂k(t) and the learning gain θk(t) shown in



Fig. 9 well demonstrate their boundedness along both the time and batch directions. A feasible
region of the parameter α is approximately determined as (0, 0.16) based on the simulation bounds
of ϕ̂k(t) and θk(t), verifying the appropriateness of choosing α = 0.1 in the new design.

Figure 9: Evolutions of the derivative estimation ϕ̂k,k−1(t) and adaptive learning gain θk(t) by the
new design applied to Example 2 in the absence of external disturbances and initial shifts.
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Figure 10: Plot of ATE indices by different methods and the set-point command assessed by
max1≤t≤N−1 |ysk(t)| for the new designs applied to Example 2 with nonrepetitive uncertainties.

In the presence of nonrepetitive initial conditions and disturbances, the new IESO based PI-
ADDSPLC design is also applied for comparison, where the IESO gains are taken as l1 = 1 and
l2 = 0.8 to satisfy the premise in (40). Meanwhile, a constraint on the batch-wise variation of
set-point command is set as δsp = 50. The corresponding ATE indices and the set-point command
assessed by max1≤t≤N−1 |ysk(t)| are shown in Fig. 10. It is seen that the two new designs well
maintain the robust convergence of the resulting ILC system. Also, the tracking performance is
significantly improved compared with the recently developed methods in [25] and [29]. Note that the



new IESO-based PI-ADDSPLC outperforms PI-ADDSPLC owing to the disturbance compensation.
Moreover, the real-time updated set-point command is bounded, as per Theorem 2.

8 Conclusions

For linear/nonlinear batch processes with unknown dynamics subject to nonrepetitive initial con-
ditions and disturbances, this paper has developed a robust PI-ADDSPLC scheme for batch run
optimization, based on a widely used PI control loop by only using the process I/O data. Sig-
nificantly enhanced performance is achieved from the initial batch compared to existing DDILC
methods based on the P-type feedback structure, such as the recently developed iAILC and IDL-
iAILC [29]. Robust convergence of the output tracking error together with the boundedness of
adaptive learning gain and real-time updated set-point command has been analyzed using the
mathematical induction. Moreover, by introducing an IESO into the PI-ADDSPLC, another set-
point learning control scheme of IESO-based PI-ADDSPLC has been developed to further enhance
the tracking performance in the presence of nonrepetitive uncertainties. A nonlinear numerical ex-
ample and an industrial injection molding process have been used to demonstrate the effectiveness
and superiority of the proposed two new ADDSPLC schemes. It should be noted that the new
ADDSPLC schemes are based on the classical PI control loop to construct a set-point learning sys-
tem. The extension to more advanced closed-loop control structures deserves further exploration,
in particular for nonlinear batch processes with input or output delay.
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