@misc{Stasiak_Andrzej_Automatyczna, author={Stasiak, Andrzej}, howpublished={online}, language={pol}, abstract={The wide applied (classic) design process of the hardware-software digital microsystems is preceded with decomposition of the system specification to set of hardware and software components. The assignment of elaborated system components to hardware or software is performed usual manually by designer during the developing process. About 71% projects do not meet implementation constraints (performance, power consumption, time-to-market) or they are just canceled before project ends. In addition, a microprocessor is the main control and processing unit in modern SOPC (System On a Programmable Chip) architectures. This unit executes program instructions in sequence. Performance (number of executed instructions by time) of the microprocessor that is embedded in SOPC is limited by the technical properties of FPGA devices. When the embedded SOPC system is overloaded then summary performance of the system may decrease below expectations because of the main CPU properties.}, abstract={There have been marked three main thesis goals: a) elaborate design method to enable developing process of the SPMC microstructure, b) shorten execution time of the main CPU, this may by done by reusing not allocated FPGA resources (moving software tasks to hardware part), c) elaborate, develop and publish CAD SPMC solution. Also, there are taken under consideration following practical assumptions: versatility, minimization of hardware resources occupied by dedicated SPMC accelerator, application of formal model of the system specification, automation of the designing process.}, abstract={There has been elaborated hardware-software architecture of digital microstructure to accelerate and finally replace not efficient standard SOPC CPU. There has been also elaborated a SPMC designing method oriented to reuse of not allocated reprogrammable SOPC logic (FPGA resources). A new formal model of the digital SPMC microstructure has been proposed (PNHSDM) as well as the SPMC functional specification decomposition algorithm, XML-SPMC system description language and many new and unique features and designing techniques related to hardware-software codesign methodology.}, title={Automatyczna dekompozycja specyfikacji behawioralnej sprzętowo-programowego mikrosystemu cyfrowego}, type={rozprawa doktorska}, keywords={sieci Petriego, model formalny, PLD, HDL}, }