Struktura obiektu
Autor:

Wielgosz, Maciej ; Skoczeń, Andrzej

Współtwórca:

Kulczycki, Piotr - ed. ; Kacprzyk, Janusz - ed. ; Kóczy, László T. - ed. ; Mesiar, Radko - ed.

Tytuł:

Using neural networks with data quantization for time series analysis in LHC superconducting magnets

Podtytuł:

.

Tytuł publikacji grupowej:

AMCS, volume 29 (2019)

Temat i słowa kluczowe:

Large Hadron Collider ; LSTM architecture ; signal modelling

Abstract:

The aim of this paper is to present a model based on the recurrent neural network (RNN) architecture, the long short-term memory (LSTM) in particular, for modeling the work parameters of Large Hadron Collider (LHC) superconducting magnets. High-resolution data available in the post mortem database were used to train a set of models and compare their performance for various hyper-parameters such as input data quantization and the number of cells. A novel approach to signal level quantization allowed reducing the size of the model, simplifying the tuning of the magnet monitoring system and making the process scalable. ; The paper shows that an RNN such as the LSTM or a gated recurrent unit (GRU) can be used for modeling high-resolution signals with the accuracy of over 0.95 and a small number of parameters, ranging from 800 to 1200. This makes the solution suitable for hardware implementation, which is essential in the case of monitoring the performance critical and high-speed signal of LHC superconducting magnets.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Data wydania:

2019

Typ zasobu:

artykuł

DOI:

10.2478/amcs-2019-0037

Strony:

503-515

Źródło:

AMCS, volume 29, number 3 (2019) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Licencja CC BY 4.0:

kliknij tutaj, żeby przejść

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego

×

Cytowanie

Styl cytowania: