Struktura obiektu
Autor:

Cestnik, Bojan

Współtwórca:

Clempner, Julio B. - ed. ; Ikonen, Enso - ed. ; Kurdyukov, Alexander P. - ed.

Tytuł:

Revisiting the optimal probability estimator from small samples for data mining

Podtytuł:

.

Tytuł publikacji grupowej:

AMCS, volume 29 (2019)

Temat i słowa kluczowe:

probability estimation ; small samples ; minimal error ; m-estimate

Abstract:

Estimation of probabilities from empirical data samples has drawn close attention in the scientific community and has been identified as a crucial phase in many machine learning and knowledge discovery research projects and applications. In addition to trivial and straightforward estimation with relative frequency, more elaborated probability estimation methods from small samples were proposed and applied in practice. ; In the context of an experimental framework, we present an in-depth analysis of several probability estimation methods with respect to their mean absolute errors and demonstrate their potential advantages and disadvantages. We extend the analysis from single instance samples to samples with a moderate number of instances. We define small samples for the purpose of estimating probabilities as samples containing either less than four successes or less than four failures and justify the definition by analysing probability estimation errors on various sample sizes.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Data wydania:

2019

Typ zasobu:

artykuł

DOI:

10.2478/amcs-2019-0058

Strony:

783-796

Źródło:

AMCS, volume 29, number 4 (2019) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Licencja CC BY 4.0:

kliknij tutaj, żeby przejść

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego

×

Cytowanie

Styl cytowania: