Struktura obiektu
Autor:

Guan, Hongjiao ; Zhang, Yingtao ; Cheng, Heng-Da ; Tang, Xianglong

Współtwórca:

Korbicz, Józef (1951- ) - red. ; Uciński, Dariusz - red.

Tytuł:

Bounded-abstaining classification for breast tumors in imbalanced ultrasound images

Tytuł publikacji grupowej:

AMCS, volume 30 (2020)

Temat i słowa kluczowe:

breast ultrasound (BUS) images ; reliable diagnosis ; abstaining classification ; imbalanced datasets

Abstract:

Computer-aided breast ultrasound (BUS) diagnosis remains a difficult task. One of the challenges is that imbalanced BUS datasets lead to poor performance, especially with regard to low accuracy in the minority (malignant tumor) class. Missed diagnosis of malignant tumors can cause serious consequences, such as delaying treatment and increasing the risk of death. Moreover, many diagnosis methods do not consider classification reliability; thus, some classifications may have a large uncertainty. To resolve such problems, a bounded-abstaining classification model is proposed. ; It maximizes the area under the ROC curve (AUC) under two abstention constraints. A total of 219 (92 malignant and 127 benign) BUS images are collected from the First Affiliated Hospital of Harbin Medical University, China. The experiment tests BUS datasets of three imbalance levels, and the performance contours are analyzed. The results demonstrate that AUC-rejection curves are less affected by class imbalance than accuracy-rejection curves. Compared with the state-of-the-art, the proposed method yields a significantly larger AUC and G-mean using imbalanced BUS datasets.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Data wydania:

2020

Typ zasobu:

artykuł

DOI:

10.34768/amcs-2020-0025

Strony:

325-336

Źródło:

AMCS, volume 30, number 2 (2020) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Licencja CC BY 4.0:

kliknij tutaj, żeby przejść

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego

×

Cytowanie

Styl cytowania: