Struktura obiektu
Autor:

Kowalski, Piotr A. ; Słoczyński, Tomasz

Współtwórca:

Kusy, Maciej - ed. ; Scherer, Rafał - ed. ; Krzyżak, Adam - ed.

Tytuł:

A modified particle swarm optimization procedure for triggering fuzzy flip-flop neural networks

Podtytuł:

.

Tytuł publikacji grupowej:

AMCS, volume 31 (2021)

Temat i słowa kluczowe:

fuzzy neural network ; fuzzy flip-flop neuron ; particle swarm optimization ; training procedure ; regression

Abstract:

The aim of the presented study is to investigate the application of an optimization algorithm based on swarm intelligence to the configuration of a fuzzy flip-flop neural network. Research on solving this problem consists of the following stages. The first one is to analyze the impact of the basic internal parameters of the neural network and the particle swarm optimization (PSO) algorithm. ; Subsequently, some modifications to the PSO algorithm are investigated. Approximations of trigonometric functions are then adopted as the main task to be performed by the neural network. As a result of the numerical verification of the problem, a set of rules are developed that can be helpful in constructing a fuzzy flip-flop type neural network. The obtained results of the computations significantly simplify the structure of the neural network in relation to similar conditions known from the literature.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Data wydania:

2021

Typ zasobu:

artykuł

DOI:

10.34768/amcs-2021-0039

Strony:

577-586

Źródło:

AMCS, volume 31, number 4 (2021) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Licencja CC BY 4.0:

kliknij tutaj, żeby przejść

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego

×

Cytowanie

Styl cytowania: