Struktura obiektu
Autor:

Zhang, Weimin ; Zhou, Luyao ; Shao, Min ; Wang, Cui ; Wang, Yu

Współtwórca:

Woźniak, Marcin - ed. ; Kumar, Yogesh - ed. ; Ijaz, Muhammad Fazal - ed.

Tytuł:

Application of textual representation methods for clinical numerical data in early sepsis diagnosis

Podtytuł:

.

Tytuł publikacji grupowej:

AMCS, volume 34 (2024)

Temat i słowa kluczowe:

sepsis diagnosis ; text representation ; pre-trained language models ; machine learning

Abstract:

Sepsis is a severe infectious disease with high incidence and mortality rates worldwide. Early diagnosis of sepsis in newly admitted intensive care unit patients is crucial to reduce mortality and improve patient outcomes. The manual diagnostic methods heavily rely on subjective clinical experience, while traditional machine learning methods require time-consuming feature engineering and the performance is limited by the knowledge acquired from scarce datasets. Therefore, to address the aforementioned issues, this study proposes a novel textual representation method for clinical numerical data, leveraging pre-trained language models from the field of natural language processing for sepsis prediction. ; Specifically, this study innovatively transforms structured clinical numerical data of patients into unstructured textual descriptions. This transformation reframes sepsis prediction into a text classification task, leveraging the rich prior semantic knowledge embedded in pre-trained language models to enhance prediction performance. The proposed method is validated using real ICU clinical data. When employing RoBERTa-base, it achieved an F1 score of 79.03%, which represents an improvement of five percentage points compared with commonly used machine learning classifiers. The experiments confirmed that the proposed method enhances the performance of early sepsis diagnosis and introduces new insights for clinical diagnosis of sepsis.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Data wydania:

2024

Typ zasobu:

artykuł

DOI:

10.61822/amcs-2024-0036

Strony:

535-548

Źródło:

AMCS, volume 34, number 4 (2024) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Licencja CC BY 4.0:

kliknij tutaj, żeby przejść

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego

×

Cytowanie

Styl cytowania: