Struktura obiektu

Autor:

Declercq, Filip ; Keyser, Robin de

Współtwórca:

Kowalczuk, Zdzisław - red.

Tytuł:

Suboptimal nonlinear predictive controllers

Podtytuł:

.

Tytuł publikacji grupowej:

AMCS, volume 9 (1999)

Temat i słowa kluczowe:

predictive control ; nonlinear control ; sequential quadratic programming ; diophantine equations

Abstract:

Predictive control based on linear models has become a mature technology in the last decade. Many successful real-time applications can be found in almost every sector of industry. Nonlinear predictive control can further increase the performance of this easy-to-understand control strategy. ; One of the main problems of implementing nonlinear predictive control is the computational aspect, which is of most importance in real-life applications. In this paper, suboptimal nonlinear predictive control strategies are proposed and compared. The nonlinear predictors are built based on neural identification methods or by white modelling. ; The use of diophantine equations, which is a common technique to calculate the optimal contribution of the noise model, is avoided by using a more natural method. The comparison between the control algorithms is made based on a simulated discrete multivariable nonlinear system and a continuous stirred tank reactor.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Data wydania:

1999

Typ zasobu:

artykuł

Strony:

129-148

Źródło:

AMCS, volume 9, number 1 (1999) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego