Object structure

Creator:

Boudjedra, Fatiha ; Benouis, Abdelhalim ; Boudaoud, Zineddine

Contributor:

Kuczyński, Tadeusz - red.

Title:

Estimation of rubber waste concrete properties by ultrasonic velocities: effect of transducers` diameters and frequencies

Group publication title:

CEER, nr 30, vol. 2 (2020)

Subject and Keywords:

rubber tire waste ; rubberized concrete ; compressive strength ; porosity ; ultrasonic pulse velocity ; transducers ; odpady opon ; beton gumowany ; wytrzymałość na ściskanie ; porowatość

Abstract:

This experimental study aimed to use the ultrasonic pulse velocity method (UPV) in order to investigate the effect of rubber tire waste content and transducers` diameters and frequencies on the evolution of ultrasonic velocities in time and to elucidate the correlations between UPV and the properties of various concrete mixtures. The incorporation of this waste involved volume substitution (0, 5, 10, 15 and 20%) of fine aggregates (sand) by rubber waste (RW) granulates. ; The dry unit weight, porosity, compressive and flexural strengths, and velocity of ultrasonic waves with different transducers - which presents the non-destructive technique - were evaluated. Rubberized concrete mixtures showed increases in porosity with lower dry unit weight compared to the control concrete. Compressive strength, flexural strength and ultrasonic velocity obtained by all transducers decreases with increasing RW content. ; These decreases are not influenced by the curing age of concretes. Decreases in the diameter and frequency of transducers caused reductions in ultrasonic velocity. These reductions are not influenced by the volume replacement of sand by RW. Correlations showed that ultrasonic velocity represents a reliable non-destructive technique for measuring the properties of rubberized concretes.

Description:

tytuł dodatkowy: Prace z Inżynierii Lądowej i Środowiska

Publisher:

Zielona Góra: Oficyna Wydawnicza Uniwersytetu Zielonogórskiego

Date:

2020

Resource Type:

artykuł

Format:

application/pdf

DOI:

10.2478/ceer-2020-0027

Pages:

200-220

Source:

Civil and Environmental Engineering Reports (CEER), no 30, vol. 2

Language:

eng

License CC BY-NC-ND 3.0:

click here to follow the link

Rights:

Biblioteka Uniwersytetu Zielonogórskiego