Struktura obiektu

Autor:

Münch, Arnaud

Współtwórca:

Korbicz, Józef (1951- ) - ed.

Tytuł:

Optimal internal dissipation of a damped wave equation using a topological approach

Tytuł publikacji grupowej:

AMCS, volume 19 (2009)

Temat i słowa kluczowe:

shape design ; wave equation ; level set ; topological derivative ; numerical viscosity

Abstract:

We consider a linear damped wave equation defined on a two-dimensional domain ?, with a dissipative term localized in a subset ?. We address the shape design problem which consists in optimizing the shape of ? in order to minimize the energy of the system at a given time T. By introducing an adjoint problem, we first obtain explicitly the (shape) derivative of the energy at time T with respect to the variation in ?. ; Expressed as a boundary integral on ??, this derivative is then used as an advection velocity in a Hamilton-Jacobi equation for shape changes. We use the level-set methodology on a fixed working Eulerian mesh as well as the notion of the topological derivative. We also consider optimization with respect to the value of the damping parameter. The numerical approximation is presented in detail and several numerical experiments are performed which relate the over-damping phenomenon to the well-posedness of the problem.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Data wydania:

2009

Typ zasobu:

artykuł

DOI:

10.2478/v10006-009-0002-x

Strony:

15-37

Źródło:

AMCS, volume 19, number 1 (2009) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego