Struktura obiektu

Autor:

Itoh, Hideaki ; Fukumoto, Hisao ; Wakuya, Hiroshi ; Furukawa, Tatsuya

Współtwórca:

Byrski, Aleksander - ed. ; Kisiel-Dorohinicki, Marek - ed. ; Dobrowolski, Grzegorz - ed.

Tytuł:

Bottom-up learning of hierarchical models in a class of deterministic POMDP environments

Podtytuł:

.

Tytuł publikacji grupowej:

AMCS, Volume 25 (2015)

Temat i słowa kluczowe:

partially observable Markov decision processes ; hierarchical models ; bottom-up learning

Abstract:

The theory of partially observable Markov decision processes (POMDPs) is a useful tool for developing various intelligent agents, and learning hierarchical POMDP models is one of the key approaches for building such agents when the environments of the agents are unknown and large. To learn hierarchical models, bottom-up learning methods in which learning takes place in a layer-by-layer manner from the lowest to the highest layer are already extensively used in some research fields such as hidden Markov models and neural networks. ; However, little attention has been paid to bottom-up approaches for learning POMDP models. In this paper, we present a novel bottom-up learning algorithm for hierarchical POMDP models and prove that, by using this algorithm, a perfect model (i.e., a model that can perfectly predict future observations) can be learned at least in a class of deterministic POMDP environments.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Typ zasobu:

artykuł

DOI:

10.1515/amcs-2015-0044

Strony:

597-615

Źródło:

AMCS, volume 25, number 3 (2015) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego