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The problem of duality in nonlinear and linear systems is considered. In addition to the known duality between controllability
and observability, new dual notions and their properties are investigated. A way to refine these properties through an
isomorphic transformation of the original systems is suggested.

Keywords: nonlinear and linear systems, algebraic approach, error correction, reachability, duality.

1. Introduction

The idea of duality is a powerful tool to investigate some
problems in the theory of dynamic systems. A well-
known fact is the duality between controllability and ob-
servability in linear dynamic systems as well as the one
between optimal regulator and observer design (Kwaker-
naak and Sivan, 1972). The duality in this case is estab-
lished by means of matrix analysis.

The problem of duality between controllability and
observability in continuous-time nonlinear systems was
considered in (Hermann and Krener, 1977) by differential-
geometric methods and it was pointed out that it is, math-
ematically, just the duality between vector fields and dif-
ferential forms. Decomposable systems in category with
products and coproducts were considered in (Arbib and
Manes, 1974), and it was shown that the duality between
controllability and observability is of the form of dual
commutative diagrams. Discrete-time nonlinear dynamic
systems were investigated by methods of the so-called al-
gebra of functions developed by Zhirabok and Shumsky
(1993). It was shown that the duality between controlla-
bility and observability is of the form of dual expressions
based on function algebra tools (operations and operators)
and dual commutative diagrams describing the main de-
finitions as properties of controllability and observability
(Zhirabok, 1998). It is natural that duality is expressed by
means of the same mathematical technique with which the
problems of controllability and observability are studied.

In this paper, we investigate two new dual problems
and their properties. The first one is connected with error
correction. It is known that the ability of digital systems
to correct errors caused by malfunctions in their elements
can be obtained via error-correcting codes (Peterson and
Weldon, 1972), i.e., by using certain redundancy. How-
ever, in some cases, the system may have the error cor-

rection property due to its operation features that can be
considered as a natural redundancy. The problem of an-
alyzing this property will be called the error correction
degree problem.

The next problem is associated with finding an accu-
racy degree of the final state of a given system under some
known control and an unknown (or known with a limited
accuracy degree) initial state. This problem will be termed
the reachability degree problem.

At first glance, these problems are not dual. The goal
of this paper is to show that they are dual mathematically
and this duality is established by means of the algebra of
functions. Besides, a way to improve the error correc-
tion property and increase the reachability degree is sug-
gested. A conference version of this paper was given in
(Michtchenko and Zhirabok, 2001).

The paper is organized as follows: Section 2 de-
scribes the problem in detail. It starts with the specifica-
tion of nonlinear and linear dynamic systems under con-
sideration. Then, definitions of self-correction errors and
the reachability degree are introduced. Section 3 is de-
voted to the approach based an the algebra of functions.
Brief descriptions of algebraic tools and their properties in
use are given. In Section 4, a solution to the error correc-
tion problem is given and an illustrative example is con-
sidered. In Section 5, a way to find a reachability degree of
the final state is given and an illustrative example is con-
sidered. Section 6 analyses the duality between the error
correction and reachability degree problems. In Section 7,
a way to improve the error correction and reachability de-
grees based on an isomorphic transformation of a given
system is suggested. The problem of inverse function de-
sign and the properties of isomorphic systems are inves-
tigated. In Section 7, the problem under consideration is
studied for linear dynamic systems. The Jordan canoni-
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cal form to improve the error correction and reachability
degrees is suggested. Section 9 concludes the paper.

2. Problem Description

The problems under consideration are initially solved for
nonlinear discrete dynamic systems described by differ-
ence equations:

x(t+ 1) = f
(
x(t), u(t)

)
, (1)

where x ∈ X ⊂ R
n and u ∈ U ⊂ R

s are the state and
control vectors, respectively, and f is a nonlinear vector
function. The obtained results are then applied to linear
dynamic systems:

x(t + 1) = Fx(t) +Gu(t), (2)

where F andG are known matrices. Denote the model (1)
by Σ = (X,U, f).

Let x1(t0) and x2(t0) be expected and real values of
a state vector, respectively, at the moment t = t0 and de-
fine ε = x1(t0)−x2(t0) as an error. The term “expected”
means that x1(t0) = f(x(t0−1), u(t0−1)); the real value
x2(t0) differs from the expected one due to a malfunction
in the system (e.g., in delayers) at t = t0. We shall further
assume that t0 = 0.

The error ε is said to be self-corrected if x1(k) =
x2(k) for some t = k where x1(k) (resp. x2(k)) is
a state to which the system transfers from the initial
state x1(0) (resp. x2(0)) under the control U(k) =
{u(0), u(1), . . . , u(k − 1)}. The error and self-correction
processes are shown in Fig. 1.

              
  x1(t0) 
 
 
          x2 (t0) 
 

    t0-1               t0                                          t 

Fig. 1. Illustration of the error correction property for k = 2.

The problem is to describe the class of all self-
correction errors and find a way to improve the self-
correction property.

The accuracy of the state vector is described by a vec-
tor of functions ϕ defined on the set X . For example, if
ϕ(x) = x1, then the value of the first state component is
known. If ϕ(x) = [x1x2 +x4]T, then the value of the first
component and the sum of the second and the fourth one
are known. In this case it can be said that the state x is
known with an accuracy of ϕ.

The problem is formulated as follows: For a given
system with the initial state known with an accuracy of

ϕ and the control U(k), find the accuracy ψ of the final
state. This accuracy will be called the reachability degree.
Besides, by analogy with self-correction analysis, find a
way to increase the accuracy of the final state.

To solve these problems, the so-called algebra of
functions developed for nonlinear systems in (Shumsky
and Zhirabok, 2005; Zhirabok and Shumsky, 1993) and
used for solving various problems in (Zhirabok, 1998;
2000) will be used. Main tools of the algebra of functions
will be presented in the next section.

3. Algebra of Functions

Vector functions are elements of this algebra, which in-
cludes some binary relations, operations and operators.

1. Partial preordering relation ≤: for any functions α :
X → S and β : X → W write α ≤ β if γα = β for
some function γ : S → W , i.e., γ(α(x)) = β(x) for
all x ∈ X where S and W are some sets. If α ≤ β
and β ≤ α, then write α ≈ β.

2. Operation×: the Cartesian productα×β of the func-
tions α and β is a function γ such that the diagram

                               X                              
                 α                          β              
                                 γ                             
                   πS                  πW                   
      S                   S × W                     W   

(3)

is commutative, i.e., α(x) = πS(γ(x)) and β(x) =
πW (γ(x)) for all x ∈ X where × is the Cartesian
product of the sets S and W , πS and πW are pro-
jections: πS(s, w) = s and πW (s, w) = w for all
(s, w) ∈ S ×W . From the definition of the Carte-
sian product of the sets it follows that γ is unique
(Goldblad, 1979). There is an equivalent definition
of the operation ×:

α× β = max(γ | γ ≤ α, γ ≤ β).

Diagram (3) results in the equalities α =
πS(α × β) and β = πW (α × β). It can be shown
that α× β = [ α

β ].

3. Binary relation Δ: (α, β) ∈ Δ, if βf ≥ απX × πU

or for some function γ : S×U →W and all (x, u) ∈
X × U the equality β(f(x, u)) = γ(α(x), u) holds.

4. Operators M and m: M(β) is a function satisfying
the conditions(
M(β), β

) ∈ Δ, (α, β) ∈ Δ, α ≤ M(β), (4)

m(α) is a function satisfying the conditions(
α,m(α)

) ∈ Δ, (α, β) ∈ Δ, m(α) ≤ β. (5)
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The operator M can be calculated as follows: If β
is a scalar function and β(f(x, u)) =

∑d
i=1 ai(x)bi(u)

where the functions b1, b2, . . . , bd are linearly indepen-
dent, then M(β) = a1 × a2 × · · ·× ad. If β = β1 ×β2 ×
· · ·×βl, then M(β) ≈ M(β1)×M(β2)×· · ·×M(βl).
In the linear case, when β(x) = Bx for some matrix B
and the system is described by the model (2), we have
M(B) = BF , since the composition β(f(x, u)) is of the
form BFx+BGu.

From the definition of the relation Δ and (5) it fol-
lows that m(α) is a vector function with a maximal num-
ber of functionally independent components. Therefore,
each of these components is a composition of variables
from the left-hand side of Eqn. (1), and the correspond-
ing composition on the right-hand side of this equation
depends on the components of the function α. The term
“functionally independent” is a generalization of the term
“linearly independent”: the functions γ1, γ2, . . . , γk are
functionally independent if no nontrivial function ϕ exists
such that ϕ(γ1(x), γ2(x), . . . , γk(x)) = 0 for all x ∈ X
(Korn and Korn, 1961, pp. 4,5–6).

A formal procedure of evaluating the operator m de-
mands a special operation (in addition to ×) and is rather
difficult. It can be found in (Zhirabok and Shumsky,
1993). In simple cases, one can use the following rule
explained on the basis of a dynamic system described by
the following difference equations:

x1(t+ 1) = u1(t)x4(t),

x2(t+ 1) = u1(t)x3(t) + u2(t),

x3(t+ 1) = u2(t)
(
x3(t) + x4(t)

)(
x1(t) + x2(t)

)
+ u1(t)u2(t),

x4(t+ 1) = u1(t)
(
x3(t) + x4(t)

) − u2(t)(
x3(t) + x4(t)

)(
x1(t) + x2(t)

)
. (6)

Consider the function α(x) = x3 + x4. Find a vec-
tor function in the form of compositions of the variables
xi at the moment t + 1 containing a maximal number of
functionally independent components. Thus, the corre-
sponding compositions of the variables xi at the moment
t depend on the sum x3(t) + x4(t) and the control u(t).
Clearly, it is the function

m
(
α(x)

)
= α1(x) = (x1 + x2) × (x3 + x4)

because

x1(t+ 1) + x2(t+ 1) = u1(t)
(
x3(t) + x4(t)

)
+ u2(t)

and

x3(t+1)+x4(t+1) = u1(t)
(
x3(t)+x4(t)

)
+u1(t)u2(t).

By analogy, one obtains

m
(
α1(x)

)
= m2

(
α(x)

)
= (x1 + x2) × x3 × x4.

In the linear case, when α(x) = Ax for some matrix
A and the system is described by the model (2), the opera-
tor m can be implemented as follows: if [ Q N ] is a matrix
of a maximal rank such that

[
Q N

] [
F

A

]
= 0,

then m(A) = Q.
The relations ≤ and Δ, the operation and operators

have the following properties:

1. α ≤ β ⇒ αδ ≤ βδ;

2. (α× β)δ = αδ × βδ;

3. if (α, β) ∈ Δ and γ ≤ α, then (γ, β) ∈ Δ;

4. (α, β) ∈ Δ ⇔ m(α) ≤ β ⇔ α ≤ M(β);

5. if α ≤ β, then m(α) ≤ m(β) and M(α) ≤
M(β);

6. M(m(α)) ≥ α, m(M(β)) ≤ β.

4. Self-Correction Property Analysis

4.1. Theoretical Results. The main tools of the algebra
of functions are operators M and m, which are dual to
each other by their definitions and properties. This duality
allows one to use some property obtained with the help of
the operator M in order to obtain a dual property based
on the operator m, and vice versa.

To solve the problems under consideration, we need
an auxiliary result. The states x and x0 are said to be ϕ-
equivalent if ϕ(x) = ϕ(x0).

Lemma 1. The ϕ-equivalence of states at the moment
t implies the ψ–equivalence of states at t + 1 under the
arbitrary control u(t) if and only if (ϕ,ψ) ∈ Δ that is
equivalent to m(ϕ) ≤ ψ or ϕ ≤ M(ψ).

Proof. (Necessity): Assume that x(t) and x0(t) are states
such that ϕ(x(t)) = ϕ(x0(t)). Define the function γ for
the state x(t) and the control u(t) as follows:

ψ
(
f
(
x(t), u(t)

))
= γ

(
ϕ
(
x(t)

)
, u(t)

)
. (7)

Since x(t + 1) = f(x(t), u(t)) and x0(t + 1) =
f(x0(t), u(t)), we have that ϕ(x(t)) = ϕ(x0(t)) im-
plies ψ(f(x(t), u(t))) = ψ(f(x0(t), u(t))) by assump-
tion. This means that if the state x(t) on the right-hand
side of (7) is replaced by x0(t), then this equality is true.
Therefore, the function γ is defined correctly. Then, by
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the definition of the relation Δ, the inclusion (ϕ,ψ) ∈ Δ
holds, which, by the properties of the operators m and
M , is equivalent to the inequalities m(ϕ) ≤ ψ and
ϕ ≤ M(ψ).

(Sufficiency): Assume that the inclusion (ϕ,ψ) ∈ Δ
is true for the functions ϕ and ψ, i.e., for some func-
tion γ under the arbitrary control u(t) the equality (7)
holds. Let also the states x(t) and x0(t) be ϕ-equivalent.
Then (7) yields ψ(f(x(t), u(t))) = ψ(f(x0(t), u(t))),
i.e., the states x(t + 1) = f(x(t), u(t)) and x0(t +
1) = f(x0(t), u(t)) are ψ-equivalent. This completes the
proof.

Introduce the minimal (with respect to the relation≤)
function ϕ as follows: ϕ(x1(0)) = ϕ(x2(0)) where x1(0)
and x2(0) are expected and real (due to a malfunction at
the moment t = 0) values of the state vector at t = 0.
In our case, this means that for the state x(0) different
from x1(0) and x2(0) the inequality ϕ(x(0)) 
= ϕ(x1(0))
holds. For example, if ε is an error in the first component
of the vector x, then ϕ(x) = x2 × x3 × · · · × xn.

Using Lemma 1, we obtain the main result of this
section.

Theorem 1. The error ε is self-corrected by the time t = k
if and only if ϕ ≤ M k(e). Here M i+1 = M(M i) and
e is the identity function: e(x) = x, ∀x ∈ X .

Proof. (Necessity): From Lemma 1 it follows that if the
state is known with an accuracy of ϕ at the moment t = 0,
then it will be known with an accuracy of ϕ1 or better at
t = 1 if and only if the inequality ϕ ≤ M(ϕ1) holds. By
analogy, a similar result is true for all i, i = 0, 1, . . . , k−1:
ϕi ≤ M(ϕi+1) with ϕ0 = ϕ. Because, by definition,
the error ε is self-corrected by the time t = k, we have
ϕk = e and ϕk−1 ≤ M(e). Since ϕ1 ≤ M(ϕ2), we get
ϕ ≤ M(ϕ1) ≤ M2(ϕ2) by the definition of the operator
M . By analogy, one obtains the chain of inequalities ϕ ≤
M(ϕ1) ≤ · · · ≤ M i(ϕi) ≤ · · · ≤ Mk(ϕk) = Mk(e).

(Sufficiency): Let ϕ ≤ M k(e). Define the function ϕi

as follows: ϕi = Mk−i(e), i = 1, 2, . . . , k, ϕk = e.
Consider the functions ϕ and ϕ1 ≤ Mk−1(e). From
the properties of the operators M and m it follows that
m(ϕ) ≤ m(Mk(e)) ≤ Mk−1(e) = ϕ1, which gives
(ϕ,ϕ1) ∈ Δ. By the definition of the relation Δ this
means that a function γ0 exits such that ϕ1(f(x, u)) =
γ0(ϕ(x), u) for all (x, u) ∈ X × U . If the states x(0)
and x0(0) satisfy the condition ϕ(x(0)) = ϕ(x0(0)), then
the equality ϕ1(f(x(0), (u(0))) = ϕ1(f(x0(0), u(0))),
or ϕ1(x(1)) = ϕ1(x0(1)), holds for some arbitrary
control u(0). Then it can be shown that m(ϕ1) ≤
m(Mk−1(e)) ≤ Mk−2(e) = ϕ2, (ϕ1,ϕ2) ∈ Δ, and
ϕ2(f(x, u)) = γ1(ϕ1(x), u) for some function γ1 and for
all (x, u) ∈ X × U . Therefore, ϕ2(f(x(1), (u(1))) =
ϕ2(f(x0(1), u(1))), or ϕ2(x(2)) = ϕ2(x0(2)), holds

for the arbitrary control u(1). By analogy, one obtains
(ϕk−1,ϕk) ∈ Δ and ϕk(x(k)) = ϕk(x0(k)). Since
ϕk = e, we get x(k) = x0(k), i.e., the error described
by the function ϕ will be corrected by the time t = k un-
der the arbitrary control U(k). The proof is complete.

The functionϕ is said to describe the error correction
degree if ϕ = M k(e) ≈ Mk+1(e) for some k.

By the definition of the function e, the inequality
e ≤ M(e) holds. Since the operator M is monotonic, we
have M(e) ≤ M 2(e) and e ≤ M(e) ≤ M 2(e) ≤ . . .
The equivalence M k(e) ≈ Mk+1(e) for some k implies
Mk(e) ≈ Mk+v(e) for all v = 1, 2, . . . This means
that if an error is not corrected at the k-th step, it is never
correct.

Clearly, if M(e) ≈ e, the system does not have the
self-correction property.

4.2. Illustrative Example. For the system described by
the model (6), we wish to find the error correction degree.
Suppose that a malfunction may occur in each component
of the state vector. Hence

ϕ1(x) =

⎡
⎢⎣ x2

x3

x4

⎤
⎥⎦ , ϕ2(x) =

⎡
⎢⎣ x1

x3

x4

⎤
⎥⎦ ,

ϕ3(x) =

⎡
⎢⎣ x1

x2

x4

⎤
⎥⎦ , ϕ4(x) =

⎡
⎢⎣ x1

x2

x3

⎤
⎥⎦ .

To obtain the function M(e), write the composition
e(f(x, u)):

e
(
f(x, u)

)
= f(x, u)

=

⎡
⎢⎢⎢⎣
u1x4

u1x3 + u2

u2(x3 + x4)(x1 + x2) + u1u2

u1(x3 + x4) − u2(x3 + x4)(x1 + x2)

⎤
⎥⎥⎥⎦.

Thus M(e)(x) ≈ (x1 +x2)×x3 ×x4, and the condition
of Theorem 1 is not fulfilled for all functions ϕ i.

To obtain the function M 2(e), write down the com-
position

M(e)
(
f(x, u)

)

=

⎡
⎢⎣ u1(x4 + x3) + u2

u2(x3 + x4)(x1 + x2) + u1u2

u1(x3 + x4) − u2(x3 + x4)(x1 + x2)

⎤
⎥⎦ .

Therefore M 2(e)(x) ≈ (x1 + x2) × (x3 + x4), and the
condition ϕi ≤ M2(e) is not fulfilled for i = 1, 2, 3, 4.
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Since

M2(e)
(
f(x, u)

)
=

[
u1(x4 + x3) + u2

u1(x3 + x4) + u1u2

]
,

we get M 3(e)(x) = x3 + x4. Since ϕ1 ≤ M3(e) and
ϕ2 ≤ M3(e), the errors in the first and second compo-
nents will be corrected in the third step.

The analysis shows that M 4(e)(x) = M3(e)(x) =
x3 + x4, and hence the errors in the third and fourth com-
ponents are not corrected. However, the sum x3 + x4 has
the self-correction property. Transform the initial system
into the system with the state vector x∗ determined as fol-
lows: x∗1 = x1, x

∗
2 = x2, x

∗
3 = x3, x

∗
4 = x3 + x4. This

gives the following description:

x∗1(t+ 1) = u1(t)
(
x∗4(t) − x∗3(t)

)
,

x∗2(t+ 1) = u1(t)x∗3(t) + u2(t),

x∗3(t+ 1) = u2(t)x∗4(t)
(
x∗1(t) + x∗2(t)

)
+ u1(t)u2(t),

x∗4(t+ 1) = u1(t)x∗4(t). (8)

Calculations yield

M∗(e)(x∗) ≈ (x∗1+x∗2) × x∗3 × x∗4,

M∗2(e)(x∗) ≈ (x∗1 + x∗2) × x∗4,

M∗3(e)(x∗) ≈ x∗4,

where M ∗ is an operator of the transformed system. More
clearly, the errors in the first three components will be cor-
rected in the third step. Indeed, if a malfunction occurs at
t = 0 in the first or second components of the state vector
x∗, then at t = 1 the error ε occurs in the third compo-
nent, at t = 2 in the first and second components, and at
t = 3 it disappears (see Table 1). It can be shown that
the error in the third component disappears at t = 2. This
corresponds to the form of the function M ∗2(e).

Table 1. Error propagation.

Components t = 1 t = 2 t = 3

x∗
1 — −ε —

x∗
2 — ε —

x∗
3 ε — —

x∗
4 — — —

5. Reachability Degree Analysis

5.1. Theoretical Results. The notion of ϕ-equivalence
is connected with an accuracy of ϕ in the following way:
Let the state x(t) at the moment t be known with an accu-
racy of ϕ, i.e., the value of the function ϕ(x(t)) is known.

Assume also that the state x(t + 1) calculated on the ba-
sis of the state x(t) and the control u(t) is known with an
accuracy of ψ. Clearly, if the state x0(t) is ϕ-equivalent
to x(t), i.e., ϕ(x(t)) = ϕ(x0(t)), then the state x0(t+ 1)
calculated on the basis of the state x0(t) and the control
u(t) is known also with an accuracy of ψ. Consequently,
the equalityψ(f(x(t), u(t))) = ψ(f(x0(t), u(t))) holds.
Thus, with an accuracy ofϕ (orψ) in mind, one has to take
into consideration the class ofϕ-equivalent (ψ-equivalent)
states and the binary relation Δ.

Theorem 2. If the initial state x(0) is known with an ac-
curacy of ϕ, then under the control U(k) the state x(k) is
known with an accuracy of ψ if and only if mk(ϕ) ≤ ψ
where mi+1 = m(mi).

Proof. (Necessity): From Lemma 1 and the compatibility
between the accuracy ϕ and ϕ-equivalence it follows that
the accuracy ψ1 with which the state x(1) at the moment
t = 1 can be obtained under the accuracy ϕ of the state
x(0) at t = 0 and the arbitrary control u(0) can be spec-
ified by the inequality m(ϕ) ≤ ψ1. By analogy, the ac-
curacy ψ2 with which the state x(2) at the moment t = 2
can be obtained under the accuracy ψ1 of the state x(1)
at t = 1 and the arbitrary control u(1) can be specified
by the inequality m(ψ1) ≤ ψ2. At the moment t = k,
the corresponding inequality is m(ψk−1) ≤ ψk = ψ. By
the properties of the operator m and the transitivity of the
relation ≤, the inequality m(ϕ) ≤ ψ1 implies m2(ϕ) ≤
m(ψ1) ≤ ψ2. By analogy, m3(ϕ) ≤ m(ψ2) ≤ ψ3 and,
eventually, mk(ϕ) ≤ m(ψk−1) ≤ ψk = ψ.

(Sufficiency): Let mk(ϕ) ≤ ψ. Then from the properties
of the operators M and m it follows that M(mk(ϕ)) ≤
M(ψ) and mk−1(ϕ) ≤ M(mk(ϕ)) ≤ M(ψ). Writing
ψk−1 = M(ψ), we get m(ψk−1) = m(M(ψ)) ≤ ψ.
This inequality means that the functions ψk−1 and ψ
specify the ψk−1-and ψ-equivalent states at the moments
t = k−1 and t = k, respectively. In other words, the accu-
racy ψ at t = k can be obtained under the accuracy ψk−1

at t = k−1. By analogy, it can be shown that the inequal-
ity mk−1(ϕ) ≤ ψk−1 results in mk−2(ϕ) ≤ M(ψk−1),
and the functions ψk−2 = M(ψk−1) = M2(ψ) and
ψk−1 specify the ψk−2- and ψk−1– equivalent states at
t = k − 2 and t = k − 1, respectively. In other words,
the accuracy ψk−1 at t = k − 1 can be obtained under
the accuracy ψk−2 at t = k − 2. By analogy, one con-
cludes that m(ϕ) ≤ ψ1 = Mk−1(ψ) and the functions ϕ
and ψ1 specify the ϕ – and ψ1 -equivalent states at t = 0
and t = 1, respectively. Thus, in the i-th step, the system
transfers from a state known with an accuracy of ψ i−1 un-
der the control u(i) into a state known with an accuracy of
ψi, i = 1, 2, . . . , k, ψ0 = ϕ, ψk = ψ. It follows that the
system transfers from the initial state known with an accu-
racy of ϕ under the controlU(k) into the final state known
with an accuracy of ψ. The proof is complete.
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Consider the important specific case when the initial
state in unknown. In this case we have ϕ = 1, and the
condition of Theorem 2 takes the form mk(1) ≤ ψ. Here
1 is the constant function: 1(x) = c = const, ∀x ∈ X .
This case will be considered later.

Consider some properties of functions in the form
mi(1). From the definitions of the function 1 and the
relation ≤ it follows that 1 ≥ m(1). This results in
m(1) ≥ m2(1). By analogy, one obtains the chain of in-
equalities 1 ≥ m(1) ≥ · · · ≥ mi(1) ≥ . . ..

Assume that the relation mp(1) ≈ mp+1(1) holds
for some p. From the properties of the operator m it fol-
lows that mp(1) ≈ mp+v(1) for all v = 1, 2, . . . For the
problem under consideration this means that the reacha-
bility degree obtained by the time t = p from an unknown
initial state cannot be improved. If m(1) ≈ 1, one can
say that the system reachability degree from an unknown
initial state is equal to zero.

5.2. Illustrative Example. For the system described
by (6), we wish to find the reachability degree from an
unknown initial state. Because

x1(t+ 1) + x2(t+ 1) = u1(t)
(
x3(t) + x4(t)

)
+ u2(t)

and

x3(t+1)+x4(t+1) = u1(t)
(
x3(t)+x4(t)

)
+u1(t)u2(t),

we have

x1(t+ 1) + x2(t+ 1) − (
x3(t+ 1) + x4(t+ 1)

)
= u2(t) − u1(t)u2(t),

which implies

m(1) = x1 + x2 − (x3 + x4).

By analogy,

m2(1) = x1 + x2 − (x3 + x4).

Accordingly, the reachability degree from the unknown
initial state can be estimated by the function ψ(x) = x1 +
x2 − (x3 + x4).

Analogously with Section 4, transform the initial sys-
tem into the system Σ∗ with the state vector x∗ deter-
mined as follows: x∗1 = x1, x

∗
2 = x2, x

∗
3 = x3, x

∗
4 =

x1 + x2 − (x3 + x4). This gives the following description
of the system Σ∗:

x∗1(t+ 1) = u1(t)
(
x∗1(t) + x∗2(t) −

(
x∗3(t) + x∗4(t)

))
,

x∗2(t+ 1) = u1(t)x
∗
3(t) + u2(t),

x∗3(t+ 1) = u2(t)
(
x∗1(t) + x∗2(t) − x∗4(t)

)
(
x∗1(t) + x∗2(t)

)
+ u1(t)u2(t),

x∗4(t+ 1) = u2(t) − u1(t)u2(t). (9)

It follows thatψ∗(x∗) = m∗(1∗) = x∗4 where the as-
terisk denotes the elements of the system Σ∗ correspond-
ing to the ones of the system Σ. In terms of the relation
≤, the functionsψ and ψ∗ are not comparable but it seems
that information about a single component of the state vec-
tor is more preferable than that about some linear combi-
nation of these components.

6. Duality

First of all, the functions 1 and e are dual because they
are unity and zero in the lattice of equivalent functions
classes, respectively, due to the property e ≤ ψ ≤ 1 for
any arbitrary function ψ defined on the set X . The op-
erators M and m are dual due to their definitions (see
the relations (3) and (4)) and properties. Finally, the in-
equalities ϕ ≤ Mk(e) and mk(1) ≤ ψ, as well as the
chains of inequalities e ≤ M(e) ≤ · · · ≤ M i(e) ≤ and
1 ≥ m(1) ≥ · · · ≥ mi(1) ≥ · · ·, are dual.

Results obtained via self-correction analysis can be
used to solve some problems of reachability analysis as
follows: Let α = Mk(e). Then m(α) = m(M k(e)) ≤
Mk−1(e). By analogy, m2(α) = m(Mk−1(e)) ≤
Mk−2(e) and, eventually, mk(α) ≤ e. As e is the least
element with respect to the relation ≤, we get mk(α) ≈
e. Since the inequality γ ≤ α implies mk(γ) ≤ mk(α),
we obtain mk(γ) ≈ e ≈ mk(α).

This result can be interpreted as follows: The in-
equality γ ≤ α means that the function γ assures an accu-
racy degree which is not worse than that of the function α.
This, however, is unnecessary because mk(γ) ≈ mk(α)
holds. Consequently, the function α specifies the least (in
terms of the relation ≤) accuracy degree of the system
initial state with which the greatest accuracy degree of the
final state will be obtained under the controlU(k), i.e., the
final state will be exactly known.

As has been shown in Section 4.2, α = M 3(e) =
x3 + x4, and then m3(α) ≈ e. This can be confirmed by
the calculations which were partially performed in Sec-
tion 3, where it was shown that

m(α) = m(x3 + x4) = (x1 + x2) × (x3 + x4)

and
m2(α) = (x1 + x2) × x3 × x4.

The next step gives

m3(α) = x1 × x2 × x3 × x4 = e.

In much the same way, the following problem can be
solved: Find an accuracy of the system initial state such
that the accuracy of the final state will be no less than ψ
under the control U(k). Clearly, this accuracy is specified
by the function ϕ = M k(ψ) since mk(ϕ) ≤ ψ in this
case.
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Dually, assume that β = mk(1). Then, by analogy
with the previous case, it can be shown that M k(β) ≥ 1
or (due to the definition of the function 1) M k(β) ≈ 1.
Because the inequality β ≤ γ implies M k(β) ≤ Mk(γ),
we have M k(γ) ≈ 1 ≈ Mk(β). These results can be in-
terpreted as follows: According to Section 4, a malfunc-
tion in the system resulting in an arbitrary error can be
corrected to a state known with an accuracy which is no
less than β.

If the desired accuracy is given by the function δ,
then the errors which can be corrected by the time t = k
with an accuracy of δ are specified by the function ϕ =
mk(δ).

7. Increase in the error correction and
reachability degrees

7.1. General Relationships. The examples in Sec-
tions 4.2 and 5.2 show the idea of increasing the error
correction and reachability degrees through an isomorphic
transformation of the initial system. Consider this idea in
the general case.

Recall that a function Φ : X → X∗ is an isomor-
phism Σ → Σ∗ = (X∗, U∗, f∗) with U = U∗ if the
following diagram is commutative:

                              f     
       X × U                                X    

              UX ππ ×Φ                     Φ  

                             f *      
     X *× U                                X *   

i.e., Φf = f∗(ΦπX × πU ), or Φf(x, u) = f ∗(Φ(x), u)
for all (x, u) ∈ X × U where πX and πU are projections:
πX(x, u) = x and πU (x, u) = u for all (x, u) ∈ X ×
U . In this case, a function Φ−1 : X∗ → X must exist
such that Φ−1Φ ≈ e, ΦΦ−1 ≈ e∗, Φ−1(f∗(x∗, u)) =
f∗(Φ−1(x∗), u) for all (x∗, u) ∈ X∗ × U .

Assume that the relationships

Mk+1(e) ≈ Mk(e) ≈ ρ1 × ρ2 × · · · × ρm (10)

for the self-correction degree analysis and

mk+1(1) ≈ mk(1) ≈ ρ1 × ρ2 × · · · × ρm (11)

for the reachability degree analysis hold for some k and
n −m components of the state vector exist (with no loss
of generality, we assume that these are x1, x2, . . . , xn−m)
such that

Φ(x) = x∗ = x1 × x2 × · · · × xn−m × ρ1(x) × ρ2(x)

× · · · × ρm(x) ≈ e∗(x∗). (12)

The last assumption is a basis for an isomorphic transfor-
mation of the system to increase the error correction and
reachability degrees. Our goal is to show that the com-
ponents x∗1 = x1, x

∗
2 = x2, . . . , x

∗
n−m = xn−m of the

system Σ∗ will be corrected by the time t = k. Dually,
the last m components of the system Σ∗ specified by the
functions ρ1, ρ2, . . . , ρm will be exactly known at the time
t = k under an unknown initial state and the controlU(k).

Rewrite (12) as

Φ = π1 × π2 × · · · × πn−m × ρ1 × ρ2 × · · · × ρm, (13)

where πj is the projection: πj(x) = xj , j = 1, 2, . . . , n.
The notation πj will be useful for formal transformations.

The expression (13) for the function φmeans that the
first n − m components of the initial basis are retained,
i.e., x∗1 = x1, x

∗
2 = x2, . . . , x

∗
n−m = xn−m. The last

components are exposed to nontrivial transformations.

7.2. Inverse Function Design. Consider the case when
each function ρj contains only one variable different from
x1, x2, . . . , xn−m. Assume that this variable is xn−m+j .
This can be achieved by changing the indices of the func-
tions ρ1, ρ2, . . . , ρm. For simplicity, consider the function
ρ1 only.

Let xi1 , xi2 , . . . , xip be the arguments of this func-
tion with xip = xn−m+1. Assume that

πi1 × πi2 × · · · × πip−1 × ρ1(πi1 × πi2 × · · · × πip)

≈ πi1 × πi2 × · · · × πn−m+1.

Also suppose that the functions ρ2, . . . , ρm have similar
structures and properties.

The example of Section 4.2 with the system (8) gives
m = 1. The variables xi1 , xi2 , xi3 are x1, x2, x3 and
ρ1(x) = x3 + x4. The isomorphism Φ, denoted by Φe, is
of the form Φe = π1 × π2 × π3 × ρ1(π3 × π4) and can be
represented by the matrix

Φe =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

⎤
⎥⎥⎥⎦ .

The example of Section 5.2 with the system (9) givesm =
1. The variables xi1 , xi2 , xi3 are x1, x2, x3 and ρ1(x) =
x1 +x2−x3−x4. The isomorphism Φ, denoted by Φr, is
of the form Φr = π1 × π2 × π3 × ρ1(π1 × π2 × π3 × π4)
and can be represented by the matrix

Φr =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
1 1 −1 −1

⎤
⎥⎥⎥⎦ .
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The function Φ in (13) is the required isomorphic
transformation of the initial system. Assume that the in-
verse function Φ−1 exists and has the following form:

Φ−1 = π∗
1 × π∗

2 × · · · × π∗
n−m

× μ1(π∗
i1 × π∗

i2 × · · · × π∗
ip

)

× μ2(. . . ) × · · · × μm(. . . ), (14)

where the function μ1 is the inverse one of ρ1 in the fol-
lowing sense:

ρ1

(
π∗

i1 ×π∗
i2 ×· · ·×π∗

ip−1
×μ1(π∗

i1 ×π∗
i2 ×· · ·×π∗

ip
)
)

≈ π∗
ip

= π∗
n−m+1. (15)

The last relationship is a result of transforming the
following expression:

ρ1(πi1 × πi2 × · · · × πip)
(
π∗

1 × π∗
2 × · · · × π∗

n−m

×μ1(π∗
i1×π∗

i2×· · ·×π∗
ip

)×μ2(. . . )×· · ·×μm(. . . )
)
,

which is a part of the composition ΦΦ−1 taking account of
the fact that xip = xn−m+1 and the function μ1 is located
in the (n−m+ 1)-th position in (14).

It is supposed that the functions μ2, . . . , μm have
similar properties. The system (8) gives the following re-
sults: μ1(x∗) = x∗4 − x∗3; the isomorphism Φ−1

e is of the
form Φ−1

e = π∗
1 × π∗

2 × π∗
3 × μ1(π∗

3 × π∗
4) and can be

represented by the matrix

Φ−1
e =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1

⎤
⎥⎥⎥⎦ ,

(15) takes the form ρ1(π∗
3 × μ1(π∗

3 × π∗
4)) = π∗

4 , because
the function ρ1 sums up their arguments and the function
μ1 is subtraction.

The system (9) yields the following results:
μ1(x∗) = x∗1 + x∗2 − (x∗3 + x∗4); the isomorphism Φ−1

r is
of the form Φ−1

r = π∗
1 ×π∗

2 ×π∗
3 ×μ1(π∗

1 ×π∗
2 ×π∗

3 ×π∗
4)

and can be represented by the matrix

Φ−1
r =

⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
1 1 −1 −1

⎤
⎥⎥⎥⎦ ,

(15) takes the form

ρ1

(
π∗

1 × π∗
2 × π∗

3 × μ1(π∗
1 × π∗

2 × π∗
3 × π∗

4)
)

= π∗
4 ,

because the function ρ1 performs the operation x1 + x2 −
x3−x4, and the function μ1 the operation x∗

1 +x∗2−x∗3−
x∗4.

In this case, the properties of the projections and the
operation give the following result for the composition
ΦΦ−1:

ΦΦ−1 =
(
π1 × π2 × · · · × πn−m × ρ1(πi1 × πi2

× · · · × πip) × ρ2(. . . ) × · · · × ρm(. . . )
)

(
π∗

1 × π∗
2 × · · · × π∗

n−m × μ1(π∗
i1 × π∗

i2

× · · · × π∗
ip

) × μ2(. . . ) × · · · × μm(. . . )
)

= π∗
1 × π∗

2 × · · · × π∗
n−m ×

(
ρ1(πi1 × πi2

× · · · × πip) × ρ2(. . . ) × · · · × ρm(. . . )
)

(
π∗

1 × π∗
2 × · · · × π∗

n−m × μ1(π∗
i1 × π∗

i2

× · · · × π∗
ip

) × μ2(. . . ) × · · · × μm(. . . )
)

= π∗
1 × π∗

2 × · · · × π∗
n−m ×

(
ρ1

(
π∗

i1 × π∗
i2

× · · · × π∗
ip−1

× μ1(π∗
i1 × π∗

i2 × · · · × π∗
ip

)
)

× ρ2

( · · · × μ2(. . . )
) × . . .

)
≈ π∗

1 × π∗
2 × · · · × π∗

n−m × π∗
n−m+1

× π∗
n−m+2 × · · · × π∗

n ≈ e.

Accordingly, the function Φ−1 from (14) is indeed
the inverse of Φ. To clarify the role of this function in
the problems under consideration, we shall indicate some
properties of the operators M and m for isomorphic sys-
tems.

7.3. Properties of the Operators M and m for Iso-
morphic Systems. Let Φ be an isomorphism Σ → Σ∗,
i.e., Φf = f∗(ΦπX × πU ), and β = β∗Φ for some
functions β : X → W and β∗ : X∗ → W . Then
βf = β∗Φf = β∗f∗(ΦπX × πU ).

By the definition of the operator M∗ for the system
Σ∗, the inclusion (M ∗(β∗), β∗) ∈ Δ holds. It gives the
inequalities

β∗f∗ ≥ M∗(β∗)πX∗ × πU

and, with the function ΦπX × πU , the inequality

β∗f∗(ΦπX × πU ) = βf

≥ (
M∗(β∗)πX∗ × πU

)
(ΦπX × πU ).

Since πX∗(ΦπX×πU ) = ΦπX and πU (ΦπX×πU ) = πU

due to the properties of the projections πX∗ and πU ,
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we obtain βf ≥ M ∗(β∗)ΦπX × πU . By the defini-
tion of Δ, this inequality is equivalent to the inclusion
(M∗(β∗)Φ, β) ∈ Δ, which implies, by the definition of
the operator M ,

M(β) = M(β∗Φ) ≥ M∗(β∗)Φ. (16)

Since β = β∗Φ implies β∗ = βΦ−1, (16) allows
us to write down the inequality M ∗(β∗) ≥ M(β)Φ−1,
or M∗(β∗)Φ ≥ M(β), which gives the desired relation-
ship M(β) = M(β∗Φ) ≈ M∗(β∗)Φ, or M ∗(β∗) ≈
M(β)Φ−1. It can be shown that this one is true for the
k-th degree of the operator M :

M∗k(β∗) ≈ M∗k(βΦ−1) ≈ Mk(β)Φ−1. (17)

The definitions of the identity functions e:X → X
and e∗:X∗ → X∗ and the equivalence ≈ imply e ≈
Φe = e∗Φ ≈ e∗ if Φ is an isomorphism. Then (10)
and (17) with β∗ = e∗, β = e, and e∗ = eΦ−1 can be
transformed as follows:

M∗k(e∗) ≈ M∗k(eΦ−1) ≈ Mk(e)Φ−1

≈
(
ρ1(. . . ) × ρ2(. . . ) × · · · × ρm(. . . )

)
Φ−1

≈
(
ρ1(. . . ) × ρ2(. . . ) × · · · × ρm(. . . )

)
(
π∗

1 × π∗
2 × · · · × π∗

n−m × μ1(π∗
i1 × π∗

i2

× · · · × π∗
ip

) × μ2(. . . ) × · · · × μm(. . . )
)

= ρ1

(
π∗

i1 × π∗
i2 × · · · × π∗

ip−1
× μ1

(π∗
i1 × π∗

i2 × · · · × π∗
ip

)
)
× ρ2

(
· · · × μ2(. . . )

)

× · · · × ρm

(
· · · × μm(. . . )

)
.

The property (15) for the function ρ1 and a similar
one for the functions ρ1, . . . , ρm yield with the above ex-
pression the relationship M ∗k(e∗) ≈ π∗

n−m+1×· · ·×π∗
n.

By Theorem 1, this gives the following result: an error in
the components x∗

1, x
∗
2, . . . , x

∗
n−m of the system Σ∗ state

vector will be corrected by the time t = k.
As has been shown in Section 4.2,

M∗3(e∗) ≈ M3(e)Φ−1

≈ ρ1

(
π∗

3 × μ1(π∗
3 × π∗

4)
)

= π∗
4 ,

and therefore the errors in the first three components will
be corrected in the third step.

Consider briefly similar properties for the operator
m. From the definition of m∗ for the system Σ∗, it fol-
lows that the inclusion (β∗,m∗(β∗)) ∈ Δ∗ holds. It is

equivalent to the inequality m∗(β∗)f∗ ≥ β∗πX∗ × πU ,
which, with the function ΦπX × πU , gives

m∗(β∗)Φf ≥ (β∗πX∗ × πU )(ΦπX × πU ).

Because
πX∗(ΦπX × πU ) = ΦπX

and
πU (ΦπX × πU ) = πU ,

we get

m∗(β∗)Φf ≥ β∗ΦπX × πU = βπX × πU .

By the definition of Δ this means that (β,m∗(β∗)Φ) ∈ Δ
and, by the definition of the operator m,

m(β) = m(β∗Φ) ≤ m∗(β∗)Φ. (18)

Analogously to the operator M , we write down
m∗(β∗) ≤ m∗(β∗)Φ−1 and m∗(β∗)Φ ≤ m(β) which,
with (18), gives the relations m∗(β∗) ≈ m∗(β∗)Φ−1 and

m∗k(β∗) ≈ m∗k(βΦ−1) ≈ mk(β)Φ−1. (19)

The functions 1: X → {c} and 1∗: X∗ → {c} are
such that 1 = 1∗Φ. Then (11) and (19) with β ∗ = 1∗,
β = 1, and 1∗ = 1Φ−1 can be written down as follows:

m∗k(1∗) ≈ m∗k(1Φ−1) ≈ mk(1)Φ−1

≈ (
ρ1(. . . ) × ρ2(. . . ) × · · · × ρm(. . . )

)
Φ−1

≈ π∗
n−m+1 × · · · × π∗

n.

In accordance with Theorem 2, this means that the compo-
nents x∗n−m+1, . . . , x

∗
n will be exactly known by the time

t = k. This result is dual to the one obtained above: an er-
ror in the components x∗

1, x
∗
2, . . . , x

∗
n−m will be corrected

by the time t = k.
As has been shown in Section 5.2,

m∗(1∗) ≈ m(1)Φ−1

≈ ρ1

(
π∗

1 × π∗
2 × π∗

3 × μ1(π∗
1 × π∗

2 × π∗
3 × π∗

4)
)

= π∗
4 ,

and therefore the forth component of the state vector x ∗

will be exactly known at t = 1.

8. Linear Systems

8.1. Theoretical Results. In the linear case, when our
system is described by (2), the problems under considera-
tion can be solved more simply.

As has been shown in Section 3, if β(x) = Bx for
some matrix B, then M(B) = BF for the system (2). In
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the linear case, e(x) = Ex (E is the identity matrix) and
M(E) = F , Mk(E) = F k.

Recall that the operator m can be calculated as fol-

lows: If
[
Q N

]
is a matrix of a maximal rank such

that [
Q N

] [
F

B

]
= 0,

then m(B) = Q. The function 1 in the linear case is the
n-dimensional row vector 0 = [00 . . . 0] filled with zeros.

The equality

[
Q N

] [
F

0

]
= 0

yields QF = 0, and therefore m(0) = Q is a matrix with
maximal numbers of rows orthogonal to the columns of
the matrix F . To obtain the matrix m2(0), consider the
equality [

Q1 N1

] [
F

m(0)

]
= 0,

which gives Q1F = −N1m(0) = −N1Q and Q1F
2 =

−N1QF = 0. Therefore, m2(0) = Q1 is a matrix with
maximal numbers of rows orthogonal to the columns of
the matrix F 2. By analogy, the matrix mk(0) is defined
on the basis of the matrix F k.

Clearly, if det(F ) 
= 0, then M(E) = F ≈ E,
and the system does not have the self-correction property.
Dually, QF = 0 implies m(0) = 0, and the reachability
degree of the system from unknown initial state is zero.

Let det(F ) = 0 and F k ≈ F k+1 for some k, i.e.,
AF k = F k+1 and BF k+1 = F k for some matrices A
and B. Clearly, these equalities are equivalent to the con-
ditions

rank(F k) = rank

[
F k

F k+1

]

and

rank(F k+1) = rank

[
F k+1

F k

]
,

respectively. That is, F k ≈ F k+1 if and only if

rank(F k) = rank(F k+1).

In the linear case, the self-correction condition for
the error ε, i.e., the inequality ϕ ≤ M k(e) = Mk(E) =
F k takes the following form: if the matrix F k contains
zero columns with numbers i1, i2, . . . , im, then the errors
in the components of the state vector with these numbers
will be corrected. Dually, the condition mk(1) ≤ ψ takes
the following form: If the matrix F k contains zero rows
with numbers i1, i2, . . . , im, then the vector state compo-
nents with these numbers will be exactly known at the
time t = k.

To improve the error correction and reachability de-
grees, we have to use an isomorphic transformation of the
system based on the Jordan canonical form of the matrix
F . It is known (Bellman, 1960; Lankaster, 1969) that for
a square n× n matrix F there exists a nonsingular matrix
Φ such that

F ∗ = ΦFΦ−1

=

⎡
⎢⎢⎢⎣
Lk1(λ1) 0

Lk2(λ2)
0 . . .

Lkr(λr)

⎤
⎥⎥⎥⎦, (20)

where k1 + k2 + · · · + kr = n and λ1, λ2, . . . , λr are the
eigenvalues of F . Furthermore, Lk(λ) is the Jordan block
(i.e., a k × k matrix) which has the form

Lk(λ) =

⎡
⎢⎢⎢⎢⎢⎣

λ 1 0 . . . 0
0 λ 1 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 . . . λ 1
0 0 . . . 0 λ

⎤
⎥⎥⎥⎥⎥⎦ , (21)

where k is the multiplicity of the eigenvalue λ.
Let rank(F ) = m < n. Then zero is an eigenvalue

of the matrix F with the multiplicity l ≥ n−m (Bellman,
1960). From (20) and (21) it follows that if all eigenvalues
are nonzero, then all rows of the matrix F ∗ = ΦFΦ−1 are
linearly independent. Because Φ is a nonsingular matrix
and rank(F ) = m < n, we obtain rank(F ∗) = m − n,
and hence the matrix F ∗ contains n − m Jordan blocks
corresponding to the zero eigenvalue of the form

Lk(0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 . . . 0
0 0 1 . . .

0 0 0 . . . 1
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦
. (22)

If k = 1, then L1(0) = 0. Therefore, errors which may
occur in the components of the vector x∗ = Φx corre-
sponding to the zero columns in matrices of the form (22)
are self-corrected. Dually, the components of the state
vector x∗ = Φx, corresponding to zero rows in matrices
of the form (22), will be exactly known at the time t = 1
under the control u(0) from an unknown initial state at
t = 0.

It is known that the square of the Jordan canonical
form (20) gives a matrix of a block-diagonal structure. In
this case, the Jordan blocks in the matrix (F ∗)2 are equal
to the squares of the corresponding Jordan blocks in the
matrix F ∗. This statement is true for an arbitrary degree



Analysis of some dual properties in discrete dynamic systems 307

D4 D3 D2 
 

D1 ⊕ ⊕ ⊕

×2 ×2 

    y 

u 

Fig. 2. Scheme of a multiplier; D1–D4 are delayers.

of this matrix. For example, if a Jordan block has the form

L3(0) =

⎡
⎢⎣ 0 1 0

0 0 1
0 0 0

⎤
⎥⎦ ,

then

L2
3(0) =

⎡
⎢⎣ 0 0 1

0 0 0
0 0 0

⎤
⎥⎦ , L3

3(0) =

⎡
⎢⎣ 0 0 0

0 0 0
0 0 0

⎤
⎥⎦ .

Consequently, if the third row of the block L3(0) corre-
sponds to the p-th component of the state vector x∗, then
the component p− 1 at t = 2 and the component p− 2 at
t = 3 will be exactly known. Dually, if the first column
of the block L3(0) corresponds to the q-th component of
the vector x∗, then the errors in the components q+ 1 and
q + 2 will be corrected at t = 2 and t = 3, respectively.

The following general conclusion can be formulated:
A quantity of the transformed system components with
exactly known values at the moment t = 1 from an un-
known initial state is equal to the defect of the matrix F .
The number of the transformed system components with
exactly known values after several steps is equal to l zero
eigenvalues of this matrix, and the number of these steps
is equal to the maximal dimension of the block (22) in
the Jordan canonical form (20). A dual statement for self-
corrected errors is evident.

Notice that the structure of the matrix (20) and the
block (22) yield the following result: Let rank(F ) = m <
n. Then a decomposition of the initial system into two
subsystems exists such that

x0(t+ 1) = G0u(t),

x00(t+ 1) = F 0x0(t) + F 00x00(t) +G00u(t) (23)

with some matrices G0, F 0, F 00, and G00 where
dim(x0) = n − m and dim(x00) = m. The compo-
nents of the vector x0 are formed out of the ones of the
vector x∗ = Φx, which correspond to the zero row of the
matrix (20); the vector x00 is formed from other compo-
nents. From the model (23) it follows that the components
of the vector x0 will be corrected (exactly known) at the
moment t = 1 if an error occurs at t = 0 (the system starts
from an unknown initial state).

8.2. Real Example. Consider a device for multiplying
the polynomials by 1+2x2+x3+2x4, both defined on the
Galois field GF(3), cf. Fig. 2 (Gill, 1971). The description
of this multiplier is the following:

x(t+ 1) =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎥⎦x(t) +

⎡
⎢⎢⎢⎣

1
2
0
1

⎤
⎥⎥⎥⎦u(t),

y(t) =
[

1 0 0 0
]
x(t) + 2u(t),

where y is the output. Clearly, for this system, F = Lk(0)
with k = 4, and therefore an error in the i-th delayer will
be corrected at t = i, i = 1, 2, 3, 4, which follows from
Fig. 2.

9. Conclusions

In this paper, the former results obtained by the author
with the use of an algebraic approach were developed to
study the problem of duality in linear and nonlinear dy-
namic systems. In addition to the known form of duality
connected with controllability and observability, this pa-
per indicated a new manifestation of duality in linear and
nonlinear dynamic systems. It is based on two main math-
ematical inequalities, ϕ ≤ M k(e) and mk(1) ≤ ψ, and
their properties that made it possible to introduce two no-
tions and investigate their properties. The first is the error
correction degree and the second is the reachability de-
gree. A duality between these parameters based on their
mathematical properties was shown. A way to improve
the obtained properties through an isomorphic transfor-
mation of the original system was suggested. In the linear
case, this technique reduces to the Jordan canonical form.

It is hoped that these new notions of duality will be
useful in solving some problems connected with the con-
trollability and observability analysis.
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