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COMPARISON OF QUALITY OF UTC(PL) AND 
UTC(NPL) SCALES PREDICTION BY MEANS OF GMDH 

NEURAL NETWORK 
 

The article presents research results on predicting the deviations 
for two different timescales, UTC(PL) and UTC(NPL) by means 
of GMDH type Neural Network. UTC(PL) timescale was realized 
by commercial caesium atomic clock. The UTC(NPL) timescale, 
on the other hand, is based on an active hydrogen maser, 
additionally supervised by the primary frequency standard in the 
form of a caesium fountain. Input data has been prepared in the 
form of two time series. Better quality of prediction has been 
obtained for UTC(NPL) timescale. Obtained values of predictions 
differ from the deviations published by the BIPM at the same day 

 
 
 

UTC(NPL) Z ZASTOSOWANIEM SIECI NEURONOWEJ GMDH 
 

z zastosowaniem sieci neuronowej typu GMDH. Skala UTC(PL) 
realizowana jest w oparciu o komercyjny cezowy zegar atomowy. 
Natomiast skala UTC(NPL) realizowana jest w oparciu o aktywny 
maser wodorowy, nadzorowany dodatkowo przez pierwotny 

czasowych. ozowania otrzymano dla skali 
czasu UTC(NPL). 

o  
 
1. INTRODUCTION 
 

The UTC(k) national time scales are physical realizations of Universal 
Coordinated Time (UTC) and are supervised by the International Bureau of 
Weights and Measures BIPM (French for Bureau International des Poids et 
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Measures). The National Metrology Institutes (NMI) are responsible for the 
implementation of the national UTC(k) time scales. The process of calculating 
the UTC scale is a very complex and time-consuming process [1]. Pre-
collection and appropriate preparation of measurement data from local and 
remote comparisons of over 400 atomic clocks, sent to BIPM via the NMI, is 
required. 

In each month, for individual UTC(k), the deviations are determined by 
BIPM with a five-day interval, determined according to the relationship 

 xb(t) = UTC(t)  UTCk(t), (1) 

determining the divergence of national time scales in relation to UTC [1]. These 
deviations are published in the "Circular T" bulletin, between the 8th and 12th 
day of the following month (tpub) (Fig. 1). Deviations are determined as single 
values per day for MJD days (Modified Julian Date), ending with digits 4 and 9. 
 

 
Fig. 1. Illustration of xb(t) deviation publication. 

xb(t). 

The delay in the publication of xb(t) deviations by BIPM adversely affects 
the compliance of UTC(k) with UTC. Therefore, in order to speed up the 
transmission of information about the divergence of UTC(k) in relation to UTC, 
BIPM in 2012 has launched a Rapid UTC project [2]. On the basis of the UTCr 
scale, every Wednesday on the BIPM ftp server, deviations determined 
according to the relationship 

 xbr(t) = UTCr(t)  UTCk(t)  (2) 

for the previous week for individual clocks using UTC(k) scales are published. 
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Taking into account the publication date of the xb(t) and xbr(t) deviations, 
ensuring the highest compliance of UTC(k) with UTC is possible by correcting 
the UTC(k) time scale by NMI institutes. Atomic timescales are determined and 
realized physically by intentionally steering signals taken from atomic clocks, 
whereas frequency and phase drift of atomic clocks are predicted. The process 
of steering UTC(k) timescales and analysing clocks behaviour can be very 
complex, including usage of statistical methods based on predicting. The 
literature for predicting national time scales UTC(k) presents statistical methods 
based on: Allan's deviations [3], linear regression method [4], Kalman filter [5], 
stochastic differential equations [6] or based on artificial intelligence [7, 8]. In 
the few NMI laboratories, the results of which have been presented, for 
example, in [9, 10], the correction of the UTC(k) scale is carried out on the 
basis of data from atomic fountains. The determined prediction value may be 
the basis for the correction of the UTC(k) scale.  

Research in the area of applying neural networks to predict UTC(k) national 
time scales have been started in 2008 at the Institute of Metrology, Electronics 

the Central Office of Measures. At that time, it has been an innovative 
approach, previously unknown in world literature. The proposal of applying 
neural networks resulted from their properties. Neural networks can be used 
where there is a partial or complete lack of knowledge of the rules describing 
objects or processes, i.e. there is a high complexity of problems [11, 12]. The 
behavioural models created by the neural network have an internal structure and 
principle of operation that correspond to the behaviour of the modelled objects 
or processes. A unique property of neural networks is the possibility of building 
models using a method based solely on the analysis of specific examples, i.e. 
the inductive method. Neural networks are a very good mathematical tool used 
to solve problems of a non-linear nature [11, 12, 13, 14]. 

Timescale predicting enables the most accurate realization of the local 
UTC(k) time scale, which allows to obtain a reliable source of measurement 
traceability in the time and frequency domain, the possibility of precise 
synchronization, independence from less reliable external sources, and also 
increases the possibilities of conducting research, also in the field of basic 
sciences. The purpose of the work is to compare the quality of predicting the 
UTC(PL) time scale, based on a single commercial caesium clock, with the 
UTC(NPL) scale, based on an active hydrogen maser with autotuning cavity, 
additionally supervised by the primary frequency standard in the form of 
a caesium fountain. The paper presents the results of the research on predicting 
the deviation values for UTC(PL) and UTC(NPL) by means of the developed 
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procedure based on data prepared in the form of two time series, built on the 
basis of deviations determined according to the UTC and UTCr scales. 

 

2. SELECTION OF A TYPE OF NEURAL NETWORK 
 
The obtained results of research on the application of MLP, RBF, GRNN 

and GMDH neural networks, presented for example in works [7, 15, 16, 17], for 
predicting deviations for the UTC(k) national time scales have shown that the 
most favourable predicting results of the deviations are shown by GMDH 
(Group Method of Data Handling) neural networks [18, 19]. The conclusions 
from the research have been the basis for the development of the deviation 
predicting procedure for the UTC(k) national time scales based on the GMDH 
neural network [20, 21]. The results of the research has shown that the 
developed procedure enables the achievement of very good quality of predicting 
UTC(k) national time scales. 

GMDH neural networks, using the group method of data handling, belong to 
the group of self-organizing networks. The group method of data handling is 
used in many areas, mainly related to data acquisition, prediction, system 
modelling or optimization [18]. 

Fig. 2 shows an example of the structure of a GMDH neural network, which 
in the training process is optimized in terms of the number of hidden layers and 
the number of neurons in these layers [18]. The activation functions of neurons 
are in the form of polynomials. 

 

 
Fig. 2. A sample structure of a GMDH type neural network. 
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The structure of the GMDH network is created automatically on the basis of 
prepared training and testing data sets. During the training process, the network 
grows and evolves, as long as it leads to an improvement in its effectiveness 
[19]. Before the next layer of neurons is attached to the current network 
structure, the components of the new layer are selected for processing accuracy. 
Neurons that do not satisfy the imposed evaluation criterion, i.e. the processing 
error associated with these neurons is too great, are eliminated from the network 
structure. 

 
3. INPUT DATA PREPARATION FOR GMDH TYPE NEURAL 

NETWORK 
 

Predicting the deviations for UTC(k) based on GMDH neural networks 
requires a training process, the quality of which depends on the number of 
training data and the method of their preparation [22]. Neural networks require 
an appropriate number of input data to properly conduct the training and 
predicting process [12, 13, 16]. The research has been carried out for two 
different time scales implemented by completely different atomic clocks. The 
active hydrogen maser has different properties compared to commercial 
caesium clocks. It has better short-term stability compared to caesium clocks, 
which are characterized by better long-term stability. Therefore, it required the 
preparation of an appropriate number of input data for both the studied time 
scales, UTC(PL) and UTC(NPL). In order to extend the number of data, the set 
of xb(t) values has been interpolated with the PCHIP function (Hermite 
interpolation available in the MATLAB program), which gives better results 
than other interpolation methods. Thanks to this, it has been possible to 
determine the value of xb(t) deviations for each day. 

 

 
Fig. 3. Creation of time series TS1 and TS2. 

 

The input data for the GMDH neural network have been prepared in the 
form of two time series TS1 and TS2. The difference in the prepared time series 
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is fundamental. The time series TS1 enables the prediction of the behaviour of 
the atomic clock realizing the given UTC(k) time scale, while in the case of the 
time series TS2 the UTC(k) time scale is directly predicted. Based on the 
obtained predictions, both time series enable the operator to make a frequency 
correction for a given time scale. 

The basic elements of these time series are xb(t) and xbr(t) deviations. Fig. 
3 shows the method of creating both time series. 

The first created time series TS1 consists of two subsets (Fig. 3). The first 
subset contains data groups (from 1 to i), determined according to the 
relationship: 

 x1(t) = xa(t) + xb(t) = UTC(t)  clockk(t), (3) 

from day t0 to day tn for which the last value of the time series is known before 
each publication date (tpub). The values of xa(t) are the historical results of the 
measurements of the phase time between the 1 pps signals from UTCk(t) and the 
atomic clock using this scale (clockk), determined for each day according to the 
relationship: 

 xa(t) = UTCk(t)  clockk(t).  (4) 

The second subset complements the TS1 time series with a group of data 
between days tn and tnr, with values being determined on the basis of the 
relationship: 

 x2(t) = xa(t) + xbr(t) = UTCr(t)  clockk(t).  (5) 

The xbr(t) deviation values are published by the BIPM on tpubr day (Fig. 3). 
The publication day of the xbr(t) deviations can also be the day (tpred), on which 
the deviation value of xb(t), hereinafter referred to as xbp(tpred) is predicted. Each 
week, the TS1 time series data is supplemented with new data groups calculated 
on the basis of (5). Therefore, it is possible to determine the next values of 
xbp(tpred) predictions in the following weeks. When the new "Circular T" 
bulletin containing the xb(t) deviation values is published, a new data group i + 
1 is created on the basis of (3) (Fig. 3), which for the relevant days replaces the 
previous data designated on the basis of (5). Of course, new xb(t) data is 
extended using PCHIP function. 

The TS2 time series is based only on the xb(t) and xbr(t) deviation values 
published by BIPM and consists of two subsets prepared according to the 
principle described in Fig. 3. 

 
4. RESEARCH RESULTS 
 

Predicting of deviations for the studied UTC(PL) and UTC(NPL) time scales 
has been carried out for the period of 6 months, from MJD 58124 to MJD 
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58279, for MJD days ending with digits 4 and 9. At the input of the GMDH 
neural network data in form of TS1 or TS2 time series have been provided. In 
the case of using time series TS1, the prediction of this time series (x1p(tpred)) 
has been obtained at the output of the GMDH neural network. After taking into 
account the value of xa(tpred) measured on the day of predicting, the prediction 
of xbp(tpred) has been calculated from the relationship:

xbp(tpred) = x1p(tpred) xa(tpred). (6)

For the time series TS2, the determined prediction value is simultaneously 
the value of the predicted deviation xbp(tpred).

Figure 4 presents values of xb(t) deviations determined by the BIPM for 
UTC(PL) and UTC(NPL) scales for analysed period of time.

Fig. 4. Determined by the BIPM values of xb(t) deviations for UTC(PL) and UTC(NPL).
xb(t) dla UTC(PL) i UTC(NPL).

Figures 5 and 6 show the values of the residuals (r), i.e. the differences 
between the predicted deviation value and the xb(t) deviation published by 
BIPM for the same prediction day, calculated from the relation:

r(tpred) = xb(tpred) xbp(tpred). (7)
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Fig. 5. Determined values of r residuals based for UTC(PL).
r dla UTC(PL).

Fig. 6. Determined values of r residuals based for UTC(NPL).
r dla UTC(NPL).

On the basis of the calculated residuals (r), the values of selected prediction 
quality measures have been determined [24]: mean error (ME), absolute mean 



237

error (MAE), mean square error (MSE), with its components (MSE1, MSE2, 
MSE3) and the root of the mean square error (RMSE) as shown in Table 1. The 
MSE1 term determines the inaccuracy of the prediction estimation of the 
average value of the prediction variable, that is, it represents the bias of the 
prediction. The MSE2 component is associated with insufficient prediction 
flexibility, that is, lack of accuracy in predicting fluctuations in the predicted 
variable. On the other hand, the MSE3 component informs about an error related 
to insufficient compliance of the direction of changes in the prediction as 
compared to the direction of changes in the prediction value. The quality of 
xbp(tpred) predictions has been assessed on the basis of the following criteria: 
residuals, selected prediction quality measures [23, 24] and the modified Allan 
deviation (MDEV) [25].

Figures 7 and 8 show a logarithmic comparison of the dependence of the 

determined prediction by means of the GMDH neural network for the analysed 
TS1 and TS2 time series, respectively for the UTC(PL) scale and the 
UTC(NPL) scale.

TS1 and TS2 for UTC(PL).
Rys. 7. 

czasowych TS1 oraz TS2 dla UTC(PL).
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TS1 and TS2 for UTC(NPL).
Rys. 8. 

czasowych TS1 oraz TS2 dla UTC(NPL).

Table 1. 
Prediction quality measure values for UTC(PL) and UTC(NPL) for TS1 and TS2 time series.

Quality measure of 
prediction

UTC(PL) 
for TS1

UTC(PL) 
for TS2

UTC(NPL) 
for TS1

UTC(NPL) 
for TS2

max (ns) 16 17 3.6 3.6
min (ns) -3.3 -14 -2.7 -2.7
ME (ns) 6.9 0.4 0.4 0.4

MAE (ns) 7.2 4.1 1.4 1.4
MSE (ns2) 66 39 2.6 2.6
MSE1 (ns2) 48 0.2 0.2 0.2
MSE2 (ns2) 0.8 0.3 0.03 0.03
MSE3 (ns2) 17 38 2.4 2.4
RMSE (ns2) 8.1 6.2 1.6 1.6

The following conclusions have been drawn from the research results 
presented in Fig. 4 to Fig. 8 and Table 1:

1. The comparison of the values of all the prediction quality measures 
indicates that better-quality predictions have been obtained in the case 
of the UTC(NPL) scale.
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2. The analysis of xb(t) deviation values shows that in the case of the 
UTC(NPL) scale we are dealing with deviation values not exceeding 
single ns, where in the case of the UTC(PL) scale the deviation values 
in the worst case exceed the value of -50 ns. 

3. In the case of the UTC(PL) scale, in 19 cases out of 23 the obtained 
residuals values 
cases out of 23 for time series TS2. The highest absolute residual value 
achieved for the TS1 time series is 15.35 ns. In the case of data defined 
by the TS2 time series, the highest absolute value of residual achieved 
is 17.05 ns 

4. In the case of the UTC(NPL) scale, all the obtained residuals values are 

residual value achieved for both the time series TS1 and TS2 is 3.52 ns. 
5. In the case of the UTC(NPL) scale for the TS1 and TS2 time series, the 

same residuum values have been obtained. This is due to the method of 
realizing the UTC(NPL) scale and the constant value of the phase time 
xa(t), between UTC(NPL) and the active hydrogen maser realizing this 
scale. 

6. The comparison of the error values  ME, MAE and MSE1 shows that in 
the case of the UTC(PL) scale and the TS1 time series, the predictions 
are biased. The obtained prediction values are lower than the observed 
values. For the UTC(PL) scale and TS2 time series, as well as the 
UTC(NPL) scale and TS1 and TS2 series, the predictions are unbiased. 
The observed residual values are multidirectional. 

7. In the case of the UTC(NPL) scale there are very small values of the 
MSE2 and MSE3 components. This means better prediction of the 
variability of the predicted values in relation to the variability of the 
observed values and a high consistency of the direction of changes in 
the prediction as compared to the direction of changes in the prediction 
value. This is due to the very high stability of the UTC(NPL) scale. 

8. In the results obtained for the UTC(PL) scale and TS1 and TS2 time 
series there are cases of large residuals. This is due to two factors. The 
first one is related to changes in the direction of the trend of xb(t) 
deviations determined according to the UTC scale, resulting from the 
control of the time scale. Hence, for these time series there have been 
large values of the MSE3 error component. The second factor is the 
variable prediction horizon which, depending on the prediction date 
(tpred), ending with the digit 4 or 9, varied from 3 to 7 days. 
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9. The achieved low residual values for UTC(NPL) scale has made it 
possible to obtain high time and frequency stability (respectively: 0.86 

ns and 5.72 10-16 for  = 30 days). 
 

5. CONCLUSIONS 
 

The obtained research results have confirmed the possibility of predicting 
the values of [UTC - UTC(k)] deviations by means of GMDH neural network 
based on data prepared on the basis of deviations determined according to the 
UTC and UTCr scales both for UTC(k) time scales based on commercial 
caesium atomic clocks, as well as UTC(k) time scales based on active hydrogen 
masers additionally supervised by the primary frequency standard in the form of 
a caesium fountain. 

The research results have shown that better quality of predicting has been 
obtained for the UTC(NPL) time scale. It is related to the very high stability, as 
well as the quality of this scale. Currently, an active hydrogen maser is also 
used for UTC(PL) scale realization, which is the right course of action. Initial 
results of the UTC(PL) predicting performed by the active hydrogen maser have 
shown an improvement in the quality of the predicting. 
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