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A b s t r a c t  

The article presents new dynamic superelements for DOF (degrees of freedom) reduction. 
Proposed spectral superelements (SES) are based on the method of normal coordinates. 
The developed superelements with basis nodes (SEB) for the inhomogeneous systems are 
also shown. Proposed superelements ensure to obtain the diagonal matrix of masses which 
allow to use the efficiency of explicit method. The results of nonlinear analysis using 
proposed reduction method for the group of high-rise building are presented. The 
calculations were performed by explicit method with the help of Automated System of 
Scientific Research (ASSR) “VESNA-DYN”. 

Keywords:  finite element method, spectral superelement, diagonal matrix, SES, SEB, 
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1. INTRODUCTION 

The design of the high-rise building at seismic hazardous area requires the detailed 
analysis of the stress-strain state constriction in the soil base.  
There are many methods available for the assessment of the effect of seismic loads 
on the stress-strain state of structures, such as methods of the static theory, spectral 
methods, and the group of direct dynamical methods. But only direct dynamical 
methods can give the most complete information about the behaviour of 
a construction. Some of the methods such as the Method of Normal Coordinates 
are guaranteed only in the case where the viscosity of a material that causes the 
damping of oscillations, is taken as an average. Most building structures are 
characterized by the presence of the multiple structural elements. The finite-
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element models of substructures (known as superelements) are developed 
independently with the formulation of contact conditions for the joint operation in 
the composition of the construction under study. This allows one to apply the 
methods most efficient for the corresponding superelements and to significantly 
improve overall efficiency of the calculations due to the such combined approach. 
In order to account for the structural peculiarities of buildings, methods based on 
the decomposition of the system can be used - ensuring separation of substructures 
that are have homogeneous or similar properties. By the conclusions of many 
experts, at most a half of the eigenmodes in the lower part of the spectrum of FEM 
has the crucial meaning (this was taken into account in the norms of the USA 
concerning the construction in the nuclear power industry [5]). Also, in the book 
[4] the attention is paid to the circumstance that dynamical properties of FEM 
have a higher level of approximation than mechanical ones. 

2. DYNAMIC SPECTRAL REDUCTION 

Most building structures are characterized by the presence of multiple structural 
elements, so it is convenient to use the method of superelements. In this work the 
finite-element models of substructions called the superelements are developed 
independently with the formulation of contact conditions for the joint operation in 
the composition of the construction.  
The different techniques of DOF reduction including superelement technology are 
presented in [4]. Also it is noticed that the superelement for the dynamic problems 
formulated by the Craig-Bampton scheme has higher accuracy than the static 
superelement due to the introduction of modal coordinates.  
The practice has shown that the superelements constructed on the eigenmodes of 
oscillations of the sub-constructions with a diagonal matrix of masses are the most 
efficient for the explicit methods (spectral superelements (SES) [1, 3]). 

2.1. Superelements based on method of normal coordinates (SES) 
There should be a 12-point space before and a 2-point space after each subsection.  
As one of the most efficient methods of dynamical reduction, is the method of 
normal coordinates with expansion the displacements in the eigenmodes. In this 
case we need to calculate only the lower part of the spectrum of eigenmodes.  
One of them is the superelement which based on the Craig-Bampton method. For 
the defined substructure it is necessary to distinguish the internal and external 
parts. The nodes, by which the substructure contacts with other parts of 
construction, are called external (Fig. 1), and the elements, which include at least 
one external node are called external elements. The nodes and elements, which 
remain in the substructure, are referred to as internal ones. 
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Fig. 1. Definition of external and internal parts of a superelement for the substructure 

According to the work [3], the matrix of reduction [S] is formed by the method of 
normal coordinates from the eigenmodes of a substructure for the internal nodes 
and by the method of static condensation for the external nodes. For this purpose, 
the eigenmodes of a substructure are determined and normalized in the first turn 
at fixed external nodes [R ]. Then the matrix [S] is supplemented by the 
displacements caused by the unit displacements of the external nodes [X ]: 

[S] =
[𝑅 ] [𝑋 ]

0 [𝐸 ]
 (1) 

where: [𝑅 ] – is the collection of vector-columns of the normalized eigenmodes 
of a substructure for internal nodes; [𝑋 ] – the collection of e vectors-columns of 
the displacements of internal nodes under single displacements of external nodes; 
and [E ] – is the identity matrix, whose order is equal to the number of external 
displacements. 

The reduced matrix of masses M  can be calculated by (2): 

M = [S] [M][S] = 

=
[𝑅 ] [𝑋 ]

[0] [𝐸 ]

[𝑀 ] [0]

[0] [𝑀 ]

[𝑅 ] 0
[𝑋 ] [𝐸 ]

  
(2) 

The obtained matrix will be “framed” and will poses a non-diagonal matrix, which 
does not allow one to efficiently apply the explicit integration schemes. 

2.2. Superelements of spectral type with diagonal matrix of mas 
The headers of even pages should include the authors' surnames, the headers of 
odd pages should include (in the place of "Instructions to authors") an expression 
related to the text of the paper (e.g. the whole title of the paper or its part). 
In the proposed version the superelement have a diagonal structure of matrix of 
mass and also applied the independent formulation of contact conditions on 
external part of substructure, which allow increasing the reduction rate. The 
matrix of reduction [𝑆] has the form (3): 

Internal nodes 

External elements 

 

“Building” 
substructure 

Another FEM or 
substructure 

External nodes 
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[𝑆] =
[𝑅 ] 0

0 [𝐸 ]
 (3)

where [𝑅 ] – is the collection of n vector-columns of the normalized eigenmodes 
of the substructure for internal nodes obtained with possibility of change the 
stiffness of external elements; [𝐸 ] – is the identity matrix.  
The submatrix [R] obtained from the eigenmodes of substructure of internal nodes 
with additional modification of stiffness matrices for external elements by kz 
factor (Fig. 2). In a case where the stiffness of external elements is nonzero, the 
matrix [𝑅 ] in (1) is supplemented by missed vectors-columns of hard 
displacements of internal nodes. All these vectors are orthonormalized with 
themselves and matrix of mass. In this case the matrix of masses will have a 
diagonal form (4):  

M = [S] [M][S] =  

= [𝑀] =
[𝑅 ] [𝑀 ][𝑅 ] [0]

[0] [𝑀 ]
=

[𝐼] [0]

[0] [𝑀 ]
 

(4)

 

Fig. 2. Substructures topology of the high-rise building for the SES-superelements 

To take into account the peculiarities of the substructure interaction with other 
parts of the FEM, k  factor of matrices of stiffness of external elements is used 
with 0 ≤ k ≤ 1. 

2.3. SES superelements formation algorithm 
The process of formation of a spectral superelement is reduced to the following 
sequence of actions: 
1. Define the external and internal displacements and external and internal 

elements of substructure. 
2. Enumerate the nodal displacements by order: firstly, all n  internal 

displacements and then n  external ones. 
3. Form the matrix of masses of FEM of the substructure: 

Substruction 
for SES-2 

Soil Base 

Another 
part of 
FEM 

Substruction for 
SES-1 

0 ≤ k ≤ 1 

0 1 

𝐾 =[𝐾 ] ⋅ 𝑘   

k  

k  

k  
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[M] =
[M ] ×    [0]

[0]   [M ] ×
 (5) 

where [M ] – is any positive definite symmetric matrix, 
[M ] – is the diagonal matrix of external nodes. 

4. Multiply the matrices of stiffness of external elements K  by the coefficient 
k , and to form the modified matrix of stiffness of FEM of the substructure: 

K =
K    K

K    K
 (6) 

where K =[K ] ⋅ k , where 0 ≤ k ≤ 1. 

The k  factor is chosen based on the peculiarities of the interaction of the 
substructure with other parts of FEM. For example, if we form a spectral 
superelement of a sufficiently stiff building, which contacts with a pliable soil 
base, then it is expedient to set k  to be zero, because the base affects slightly the 
main modes of oscillations of a building. For a rock base, k  can be set to be 1. 
But it is worth to emphasize that the choice of k  has no influence on the 
convergence of the solutions of problems. Irrespective of the value of k , the 
precision of the representation of FEM properties of the substructure by a 
superelement increases with the number of involved modes of oscillations. If the 
number of modes is equal to the number of internal degrees of freedom (i.e., 
without a reduction), then the superelement exactly corresponds to the 
substructure. The successful choice of k  factor, can only decrease the number of 
involved modes needed for the necessary accuracy of results. 
5. Impose the boundary on external nodes, and set all external displacements to 

zero. Solve the partial problem of determination of the necessary 
eigenfrequencies and eigenmodes of oscillations in the lower part of the 
spectrum of the substructure  

K − ω [M ] {u } = 0 (7) 

6. Calculate the reduction matrix [S]. In case of k > 0, add six modes of rigid 
displacements of the internal nodes and orthogonalize them with another 
modes determined earlier. In the case of a linear dependence, the 
corresponding mode is omitted. The obtained modes determine the basis 
(eigenmodes) and the matrix of reduction for the internal degrees of 
freedom [S ]. 

7. Form the real matrix of stiffness [K]  of FEM of the substructure with the 
non modified stiffness for the external elements. E.g. by the matrices of 
stiffness of external elements multiplied by the coefficient (1 − k ): 
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[K] =
[K ]   [K ]

[K ]   [K ]
 (8) 

8. Calculate the reducted matrix of stiffness and matrix of masses of the 
superelement: 

[K] =
[S ] [K ][S ]   [S ] [K ]

[K ][S ]           [K ]
 (9) 

[M] =
[S ] [M ][S ] [0]

[0] [M ]
=

[I] [0]

[0] [M ]
 (10) 

where [I] is the identity matrix. 
The matrix of stiffness of a spectral superelement is slightly filled and is stored in 
a special format convenient for the application of efficient algorithms executing 
some actions over the matrices. The matrix of masses is conserved in the form of 
a vector-diagonal. The matrix of reduction [𝑆 ] is also preserved for the calculation 
of the displacements of internal nodes of the substructure in terms of generalized 
displacements of the superelement. 

3. DYNAMICAL SUPERELEMENTS FOR INHOMOGENEOUS 
SYSTEMS AND COMBINED SUPERELEMENTS 

The superelements constructed on the basis of the expansion in the eigenmodes of 
oscillations were successfully used in dynamical calculations of a lot of 
constructions in the cases where the eigenmodes corresponding to the lower part 
of the spectrum of eigenfrequencies were applied. Such approach is based on the 
reasoning that the errors of the approximation of modes increase with the 
frequency of oscillations, which is true for the homogeneous constructions. If the 
dynamical behaviour of inhomogeneous systems including the “soil base – 
foundation – building” system is analysed, such conclusion does not correspond 
to the reality. 
The accuracy of approximation of the eigenmodes can be related to the number of 
elements, which can represent a wave with length L  corresponding to the 
frequency ω of the environment. If polylinear finite elements are used, their 
number n  for the representation of a wave with length L  at the frequency ω 
should be n ≥ 6 (three for a half-wave), since a less number (6 > n ≥ 3) will 
lead to large errors or the wave cannot be described for 3 > n . The wavelength 
is proportional to the period of oscillations T  and to the velocity of propagation 
c . The value of L  for a longitudinal wave is as follows: 
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𝐿 = 𝑇 𝑐 =
2𝜋

𝜔
𝑐 =

2𝜋

𝜔

𝐸(1 − 𝑣) 

𝑚(1 − 2𝑣)
, (11) 

where 𝐸, 𝑣, 𝑚 are the modulus of elasticity, Poisson’s ratio, and the density of the 
environment. Let us denote the characteristic size of finite elements by ℎ. For 
𝐿 = ℎ𝑛 , we obtain the condition of limitation for the use of the eigenmodes 
due to the limitation of the corresponding eigenfrequencies: 

𝜔 =
2𝜋

𝐿
𝑐 =

2𝜋

ℎ𝑛
𝑐 ≤

1

ℎ

𝐸(1 − 𝑣) 

𝑚(1 − 2𝑣)
. (12) 

From whence, it is seen that, for the materials possessing essentially different 
physico-mechanical properties, criteria (12) for the choice of eigenmodes will be 
also significantly different. In other words, the method of reduction based on the 
traditional expansion in eigenmodes, which are selected by the single criterion 
(values of eigenfrequencies) is not suitable for the description of such 
inhomogeneous media as the soil base, etc. In this case, it is more expedient to use 
the method of basis nodes with the Guyan dynamical reduction or with the 
concentration of the total mass in basis nodes. The precondition is the requirement 
for the external elements to possess the diagonal matrices of masses. In order to 
construct the spectral superelements on basis nodes with a diagonal matrix of 
masses, we will apply the method of spectral elements without a reduction of 
internal dynamical degrees of freedom.  

3.1. Superelements based on Guyan’s basis nodes (SEB) for 
inhomogeneous systems 

The order of the formation of a SEB superelement is realized according to the 
stages given in 2.3:  
1. To determine external and internal displacements and external and internal 

elements of the substructure. To separate the basic displacements among the 
internal ones.  

2. To enumerate all displacements by order: firstly the internal nonbasic n  
displacements and then basic n  and external n  ones. 

3. To form the matrix of masses of FEM of the substructure: 
 

[𝑀] =

[𝑀 ] [𝑀 ] [0]

[𝑀 ] [𝑀 ] [0]

[0] [0] [𝑀 ]
, (13) 
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where [𝑀 ] is a positive definite symmetric matrix; 
[𝑀 ] is the diagonal matrix of external nodes, 
4. To multiply the matrices of stiffness of external elements by the coefficient k  

possessing values in the interval  0 ≤ 𝑘 ≤ 1 and to form the corrected matrix 
of stiffness of FEM of the substructure:  

𝐾 =

𝐾 𝐾 𝐾

𝐾 𝐾 𝐾

𝐾 𝐾 𝐾

, (14) 

5. To construct the subsystem of equations  

𝐾 𝐾

𝐾 𝐾
+

[𝑀 ] [𝑀 ]

[𝑀 ] [𝑀 ]

{𝑢}

{𝑢}
= 0, (15) 

6. As at the static condensation (without regard for inertial forces), to determine 
the displacements {𝑢}  in terms of {𝑢} : 

{𝑢} = − 𝐾 𝐾 {𝑢} = [𝑇]{𝑢} , (16) 

7. To restore the matrix of stiffness of the substructure and to substitute these 
displacements in the dynamical equations (15), where the real matrices (13) 
are used instead of matrices (14). To multiply the first equation by the matrix 
[𝑇]  and to add the equations, which gives the reduced system: 

𝐾 + 𝑀 {𝑢} = 0, (17) 

where: 

𝐾 = [𝑇] [𝐾 ][𝑇] + [𝑇] [𝐾 ] + [𝐾 ][𝑇] + [𝐾 ], (18) 

𝑀 = [𝑇] [𝑀 ][𝑇] + [𝑇] [𝑀 ] + [𝑀 ][𝑇] + [𝑀 ], (19) 

8. To orthogonalize {𝑢}  with the matrix 𝑀  by the Gram-Schmidt process 
and to determine the matrix of transformation [𝐴], which satisfies the 
condition of orthogonality: 

{𝑢} = [𝐴]{𝑢} , {𝑢} 𝑀 {𝑢} = [𝐼], (20) 

9. To form the matrices of stiffness and masses of the superelement by the 
relations 
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[𝐾] =
[𝐴] 𝐾 [𝐴]   [𝑆] [𝐾 ] + [𝐴] [𝐾 ]

[𝐾 ][𝑆] + [𝐾 ][𝐴]           [𝐾 ]
, (21) 

[𝑀] =
[𝐼] [0]

[0] [𝑀 ]
, [𝑆] =  [𝑇][𝐴] (22) 

In this case, the vector of displacements of the superelement {𝑢}  is composed 
from the generalized displacements of basis nodes {𝑢}  and the displacements of 
external nodes {𝑢} . The vector of internal nonbasis nodes is represented in terms 
of the vector {𝑢} : 

{𝑢} =
{𝑢}

{𝑢}
, {𝑢} = [𝑆]{𝑢}  (23) 

In calculations, we conserve the matrix of stiffness, diagonal matrix of masses, 
rectangular matrix of reduction [𝑆], and square matrix of orthogonalization [𝐴]. 
In a number of cases where the order of a matrix is not too large, we can use an 
improved version of the method of basis nodes. Its essence consists in that the 
orthogonalization of the vectors {𝑢}  occurs by means of the solution of the 
homogeneous equation (19) and by the determination of the complete spectrum of 
eigenfrequencies and eigenmodes. Then the matrix [𝐴] is composed of the vectors 
of eigenmodes, the matrix of masses remains invariable, and the matrix of stiffness 
becomes slightly filled (framed). Such superelement can be considered to be 
combined, and its application increases the efficiency of usage of the method of 
basis nodes. It is worth noting that the concentration of masses only in basis nodes 
significantly simplifies the procedure of construction of the relations for a 
superelement. 

4. CALCULATION METHOD AND MATERIAL MODELS 

The calculations were executed in a nonlinear conditions by the direct integration 
over the time by using the explicit method of central differences with discrete 
steps in the spatial coordinates. Algorithm was implemented [1, 8] using 
Automated System of Scientific Research “VESNA-DYN”.  
For the soil used the developed visco-elasto-plastic model under dynamic loads 
was applied. The limit state is described with the developed combined model, 
taking into account the criteria of Mohr-Coulomb, Mises-Schleicher-Botkin, 
Mises and the tension condition [1]. For the concrete material the combined model 
which takes into account visco-elasto plasticity with dynamical hardening was 
used [1]. 



DYNAMIC REDUCTIONS FOR THE NONLINEAR  
SOIL-FOUNDATION-STRUCTURE SYSTEM INTERACTIONS 

155 

 
 

 
5. NONLINEAR INTERACTION SIMULATION OF HIGH-RISE 

BUILDINGS 

The developed superelements were used for simulation of a group of high-rise 
buildings (12, 18 and 24-storey) in a seismically hazardous area (fig.3). The 
developed FEM includes a system of 1'505'383 algebraic equations. Using SES 
dynamic superelements composed for overhead part of buildings led to the 
reduction the number of degrees of freedom (DOF) by 32%. The number of 
involved eigenmodes was 390, bounded by eigenfrequencies up to 30 Hz of 
substructure eigenfrequency and allows performing an efficient dynamic analysis.  

 
Fig. 3. Substructures topology of the high-rise building for the SES-superelements 

According to the preliminary results obtained for the single 24-story building such 
criteria allow to reduce the number of DOF up to 2.8 times. The maximum error 
was less than 12% and appears at the short-term peaks of fluctuations.  
The result presented in [3] show that the behavior and deformations of the three 
building complex significantly differ for each building. Lowest 12-story building 
had maximum amplitudes, that lead to the significant nonlinear deformation of the 

Building Substructure 
SES-1 

Soil base 

Pile foundations 

24 

18 

12 

SES-3 

SES-1 

56
m

 

SES-2 

Full Equations:1'505'383 
Redused Equations 1'025'766 
 

Seismicity (MSK-64): 7 
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soil base (with piles). This is typical for the resonance mode. Predicted residual 
settlements for the foundation of 12, 18 and 24-storey buildings were about 5 cm, 
3 cm and 1 cm respectively. The consideration of only viscoelastic deformations 
causes a change in the process of deformation, especially for the foundation 
construction. Plastic deformations decrease the actual stiffness of piles, which 
affects essentially the character of a deformation of foundations.  
Thus, the executed studies allow us to recommend the use of spectral 
superelements in the modeling of the dynamic behavior of buildings with the soil 
base, as well as accounting for a nonlinear deformation of the soil. 

6. CONCLUSIONS 

Based on the results of our research, we have reached the following conclusions: 
The new superelements for reduction of degrees of freedom were developed. They 
involve the peculiarities of boundary conditions for the separated substructures, 
which ensures the account for properties of their dynamical behavior in the 
composition of buildings, structures and inhomogeneous media. 
The developed spectral superelements (SES) based on the method of normal 
coordinates provides the diagonal form matrix of masses and allows one to 
significantly decrease the dynamical order of the system of equations.  
The approach of stiffness adjustment of SES external elements by kz factor (used 
for the eigenmodes only) allow to further decrease the number of involved modes 
needed to achieve required accuracy of results. 
The method can be recommended for the different dynamical calculations of 
constructions in cases where the eigenmodes corresponding to the lower part of 
the spectrum of eigenfrequencies can be applied. This approach is based on the 
reasoning that the errors of the approximation of modes increase with the 
frequency of oscillations, which is true for the homogeneous constructions.  
The developed superelement with basis nodes (SEB) based on Guayan’s reduction 
principles provides the diagonal form matrix of masses and allows to perform 
reduction which is suitable for the inhomogeneous systems of construction, such 
as for the soil-foundation-structure interaction. 
Using of proposed superelements, especially for the high-rise buildings allows one 
to perform the efficient dynamic analysis (with significant DOF reduction) of the 
soil – foundation – structure interaction, including the seismic one, with explicit 
integration schemes. 
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DYNAMICZNE REDUKCJE DLA NIELINIOWEGO MODELOWANIA 
INTERAKCJE SYSTEMU GRUNT-FUNDAMENT-KONSTRUKCJA 

S t r e s z c z e n i e  

W artykule przedstawiono nowe dynamiczne superelementy dla redukcji DOF (stopni 
swobody). Proponowane superelementy spektralne (SES) są oparte na metodzie 
współrzędnych normalnych (wykozystanie niecałego spektrum ciestotliwosci własnej). 
Zostały przedstawione opracowane superelementy z węzłami podstawowymi (SEB) dla 
niejednorodnych układów. Proponowane superelementy zapewniają uzyskanie przekątnej 
macierzy mas, które pozwalają wykorzystać efektywnie metod jawnych. Zostały 
pokazane wyniki analizy nieliniowej z wykorzystaniem proponowanej metody redukcji 
dla grupy budynków wielopiętrowych. Obliczenia zostały przeprowadzone metodą jawną 
za pomocą Automatyzowanego Systemu Badań Naukowych (ASSR) "VESNA-DYN". 

Słowa kluczowe metoda elementów skończonych, superelementy spektralne, macierz 
diagonalna, SES, SEB, metoda jawna, VESNA-DYN, budynek 
wysokościowy, analiza nieliniowa. 
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