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This paper describes the effects of a magnetic field on unsteady free convection oscillatory systems. When 
temperature and species concentration fluctuate with time around a non-zero constant, "Couette flow" across a 
porous medium occurs. The system of non-linear ODEs that governs the flow is solved analytically using the 
perturbation approach because the amplitude of fluctuations is very tiny. Mean flow and transient velocity, transient 
concentration, transient temperature, heat transfer, mean skin friction and phase and amplitude of skin friction. All 
have approximate solutions. The influence of different parameters on flow characteristics has been specified and 
discussed. 
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1. Introduction 

 
 Modern technology has made fluid flow studies a hot topic in recent years due to the interplay of 
multiple phenomena. To get the most out of geo-thermal energy, it goes without saying that you need a 
thorough understanding of the number of perturbations required to produce flow in geo-thermal fluids. 
Furthermore, knowing the number of perturbations required to start flow in mineral fluids located in the earth's 
crust enables the most efficient mineral harvesting. Raptis et al. [1] conducted a series of research considering 
geophysical applications of flow through porous media, where the porous medium is surrounded by porous 
plates that are either horizontal, vertical, or parallel. The free convective flow past a vertical wall was explored 
extensively by Kulacki [2]. Nield [3] also investigated convection flow in a porous material with an inclined 
temperature gradient. 
 Regarding many industrial and aerodynamic flow problems, the reaction of a laminar boundary layer 
flow to free stream oscillations is critical. For a growing number of scientific and technical applications, 
Kelleher et al. [4] examined how surface temperature oscillations affected the laminar free convection 
boundary layers’ heat transfer response along heated vertical plates. Free convection oscillatory flow via a 
porous medium with periodic temperature changes was studied by Sharma et al. [5]. Couette oscillations in 
rotating systems were investigated by Muzumder [6]. Oscillatory flow through porous media with convection 
was investigated by Raptis and Peridikis [7]. Singh and Verma [8] and Sharma et al. [9] explored a three-
dimensional oscillatory flow in porous media. Periodic solutions for oscillatory channel flow in a rotating 
porous medium were investigated by Singh et al. [10]. 
 For more than three decades, many studies have focused on buoyancy-induced flows with the 
combined effect of heat and mass diffusion. As a result of its importance various scientific and industrial 
applications, fluid mechanics and heat and mass transfer are now viewed as crucial fields. Buoyancy forces 
act on fluid constituents when temperature changes cause density changes, causing free convection. 
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Temperature variations drive air flow in our daily lives. Ostrach [11] and others carried out detailed 
investigations on the free convective flow across plates oriented vertically. During these experiments, only 
steady-state flows were studied. Soundalgekar [12] examined the effects of viscous dissipation on the flow 
across an infinite vertical porous plate in the case of unstable free convective flows. As a result, it was believed 
that the temperature of the plate fluctuated with a small amplitude. Martynenko et al. [13] studied vertical plate 
laminar free convection in a laboratory setting. Harris et al. [14] examined free convection through a porous 
medium from a vertically oriented plate. Using the combined buoyancy effects of mass and thermal diffusion, 
Gebhart and Pera [15] studied natural convection flows along horizontal and vertical surfaces. Tripathi and 
Sharma [16-17] discussed the effects of heat and mass transfer on a two-phase blood flow with Joule heating 
and variable viscosity in the presence of a magnetic field. 
 Magnetohydrodynamics (MHD) involves the study of electrically conducting fluids. Liquid metals, 
plasmas and salt water or electrolytes are examples of such fluids. The problems of flow of electrically 
conducting fluids under the influence of a magnetic field have gained the attention of many writers because of 
their applications in geophysics, astronomy, engineering, and boundary layer management in aerodynamics. 
Many existing viscous hydrodynamic solutions should be enhanced to include the effects of a magnetic field 
in contexts where the viscous fluid is electrically conducting, given the growing number of technical 
applications that utilize the magnetohydrodynamics effect. Hydromagnetic effects on flow through a plate 
were thoroughly investigated by Greenspan and Carrier [18]. According to Attia and Kotab [19], a 
hydromagnetic channel's flow and temperature fields were analyzed. Using an MHD free convection flow with 
varying surface heat flux, Hossain et al. [20] examined. A porous material was studied by Sharma et al. [21] 
under periodic temperature variations. Sharma and Singh [22] investigated the effects of a magnetic field and 
thermal diffusion on an oscillatory free convection flow past a plate with viscous heating in great detail. 
Recently, Sharma et al. [23 ] examined the Soret and Dufour effects in a biomagnetic fluid flow through a 
tapered porous stenosed artery. 
 Many engineering applications rely on the impact of simultaneous heat and mass diffusion in an 
oscillatory flow on low electrical conductivity fluid boundary layer flows. As a result, the primary goal of this 
paper is to investigate the effects of porosity and a magnetic field on the flow of an incompressible, viscous 
and electrically conducting, fluid between two parallel, vertically oriented porous plates with fluctuating free 
stream concentration, temperature, and velocity fluctuating with time around a non-zero constant mean. 
 
2. Formulation of the problem 
 
 We investigate an unsteady Couette flow of a incompressible, viscous, electric conducting fluid over 
a highly porous media limited by two infinite porous flat plates oriented vertically. One of them is startled 
awake by the free stream velocity, which oscillates in time around a constant mean. The *x − axis runs 
vertically up the moving vertical plate, while the *y -axis runs perpendicular to it. At temperature *,bT  the 

other fixed plate is at *   .y b=  The shape's free-stream velocity distribution is defined as: 
 

  ( ) ( )* ** * i t
0U t U 1 e ω= + ε  (2.1) 

 
where 0U  is the average constant free-stream velocity, *ω  is the oscillation frequency, and *t  is the period. 
 Magnetofluid-dynamics differs from standard fluid dynamics. Due to the electromagnetic field a force 
term is added. Maxwell's equations must be met on the whole field. The following assumptions are made to 
construct the basic equations for the problem at hand: 

1) The magnetic field is applied perpendicular to the plane of the disc, and the flow is steady and laminar. 
2) The fluid is viscous, incompressible, finitely conducting, and has constant physical properties. 
3) The magnetic Reynolds number is set to a low enough value to ignore the induced magnetic field. 
4) The Hall Effect, as well as electrical and polarization effects, are not considered. 
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The problem is governed by the following equations: 
 

  ( ) ( ) ( ) ( )
* * *

* * * * * *
* * * *

2

b c b2

J Bu U u g T T g C C u U
t t y K

×∂ ∂ ∂ ν= + ν + β − + β − − − −
ρ∂ ∂ ∂

 

. (2.2) 

 
The “Lorentz force” due to magnetic field is represented by the fifth term on the RHS of Eq.(2.2) 
 
  ( )J B v B B× = σ × ×

    . (2.3) 
 
The equation (2.2) becomes 
 

  ( ) ( )
* * *

* * * *
* * *

2

b c b2
u U u g T T g C C
t t y

∂ ∂ ∂= + ν + β − + β −
∂ ∂ ∂

( ) ( )
* *

* *
*

2u U B
u U

K

− σ ν− − −
ρ

. (2.4) 

 
The energy equation is as follows: 
 

  
* *

*  
*

2

2
T T
t y

∂ ∂= α
∂ ∂

. (2.5) 

 
The concentration equation is as follows: 
 

  
* *

* *

2

2
C CD
t y

∂ ∂=
∂ ∂

. (2.6) 

 
The fluid motion's boundary conditions are: 
 
  ( ) ( )* * * * * * ** : * , * ,i t i t

0 0 0 by 0 u U 1 e T T T T eω ω= = + ε = + ε −  

 
  ( )* * * * ** ,i t

0 0 bC C C C e ω= + ε −  (2.7) 

 
  * * * * * *: , ,b by b u 0 T T C C= = = =   
 
where * * * * * * * * * , ,  ,  , , , ,   ,   ,  ,  ,  ,   ,   ,  ,  c b 0 b 0U u g v T T T C C C D Kβ β α  are respectively, the free-stream 
velocity, velocity, gravity, kinematic viscosity, volumetric coefficient of thermal expansion, volumetric 
coefficient of thermal expansion with concentration, thermal diffusivity, fluid temperature in the boundary 
layer, temperature of the moving plate, temperature of the stationary plate, fluid concentration in the boundary 
layer, concentration of the moving plate, concentration of the stationary plate, species concentration, electrical 
conductivity and permeability of the porous medium. The ( )*  denotes dimensional quantities. 
 The non-dimensional quantities are described as follows 
 
  ** / , * / , / , * *, * / ,2

0 0y y b u u U U U U t t b= = = = ω ω = ω ν   
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  ( ) ( ) ( ) ( )* *
* * ** / , Grassoff number ,

2
0 b

b 0 b
0

g b T T
T T T T Gr

U

β −
θ = − − =

ν
  

 

  ( ) ( )* * *
modified Grassoff number , ,

2
c 0 b

2
0

g b C C KGc K
U b

β −
= =

ν
  

 

  ( ) ( )* * ** / ,b 0 bC C C C C= − −       ( )Schmidt number ,Sc
D
ν=  

 

  ( ) ( )Hartmann number , Pr Prandtl number /
2 2B bM σ= = ν α

ρν
. 

 
Equations (2.4), (2.5), and (2.6) are transformed into 
 

  ( ) ( )2
2

2
u Uu U u Gr GcC M u U

t t Ky
−∂ ∂ ∂ω = ω + + θ + − − −

∂ ∂ ∂
, (2.8) 

 

  Pr
2

2t y
∂θ ∂ θω =
∂ ∂

, (2.9) 

 

  
2

2
C CSc
t y

∂ ∂ω =
∂ ∂

, (2.10) 

 
with corresponding boundary conditions 
 

  
,: , ,

: , , .

it it ity 0 u 1 e 1 e C 1 e

y 1 u 0 0 C 0

= = + ε θ = + ε = + ε

= = θ = =
 (2.11) 

 
3. Solution of the problem 
 
 Because the amplitudes of the concentration, temperature, and free-stream velocity fluctuations are 
relatively small, we now assume the following solutions: 
 
  ( ) ( ) ( ), it

0 1u y t u y u y e= + ε , 
 
  ( ) ( ) ( ), it

0 1y t y y eθ = θ + εθ , (3.1) 
 
  ( ) ( ) ( ), it

0 1C y t C y C y e= + ε ,  
 
and for the free-stream velocity 
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  itU 1 e= + ε . (3.2) 
 
We find the following equations by using Eqs (2.8), (2.9) and (2.10) in (3.1) and (3.2) and comparing the 
coefficients of ε and ignoring those of ε2: 
 

  '' 2 20
0 0 0 0

u 1u M u Gr GcC M
K K

− − = − θ − − − ,  (3.3) 

 
  '' ,0 0θ =  (3.4) 
 
  '' ,0C 0=  (3.5) 
 

  ( ) ( )'' 2 21
1 1 1 1

u 1u i M u Gr GcC i M
K K

− ω + − = − θ − − ω + − , (3.6) 

 
  '' Pr1 1i 0θ − ω θ = , (3.7) 
 
  ''

1 1C i ScC 0− ω = , (3.8) 
 
with the corresponding boundary conditions:  
 

  
: , , , , , ,

: , , , , ,

0 1 0 1 0 1

0 1 0 1 0 1

y 0 u 1 u 1 1 1 C 1 C 1

y 1 u 0 u 0 0 0 C 0 C 0

= = = θ = θ = = =

= = = θ = θ = = =
 (3.9) 

 
where differentiation with respect to y is denoted by primes. We find the solutions by solving Eqs (3.3) to (3.8) 
under the corresponding boundary conditions (3.9):  
 
  ( ) ( ),0 y 1 yθ = −  (3.10) 
 
  ( ) ( ) ,0C y 1 y= −  (3.11) 
 

  ( ) ( ) ( ) ,dy dy
0 1 2

2

Gr Gc
u y k e k e 1 y 1

1M
K

− +
= + + − +

 + 
 

 (3.12) 

 
  ( ) 1 1n y n y

1 3 4y k e k e−θ = + ,  (3.13) 
 
  ( ) 2 2n y n y

1 5 6C y k e k e−= + , (3.14) 
 
  ( ) 3 3 1 1 2 2n y n y n y n y n y n y

1 13 14 7 8 9 10u y k e k e k e k e k e k e 1− − −= + + + + + +  (3.15) 
 
where: 
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( )

( )

2 d

1
2 d d

1M Gr Gc e
Kk

1M e e
K

−

−

+ − +
=

 + − 
 

,      
( )

( )

2 d

2
2 d d

1M Gr Gc e
Kk

1M e e
K

−

+ − +
=

 + − 
 

,      ,
13 2n

1k
1 e

=
−

 

 

  ,
14 2n

1k
1 e−=

−
      , ,2

1
1d M n i Pr
K

= + = ω       , ,
2 25 62n 2n

1 1k k
1 e 1 e−= =

− −
 

 

  , ,2
2 3

1n i Sc n i M
K

= ω = ω + +       ,3
7

2 2
1

Grkk
1n i M
K

= −
 − ω + + 
 

 

 

  ,4
8

2 2
1

Grkk
1n i M
K

= −
 − ω + + 
 

      , ,5 6
9 10

2 2 2 2
2 2

Gck Gckk k
1 1n i M n i M
K K

= − = −
   − ω + + − ω + +   
   

 

 
  [ ],11 7 8 9 10k k k k k= − + + +       ,1 1 2 2n n n n

12 7 8 9 10k 1 k e k e k e k e− − = − + + + +    

 

  , .
3 3

3 3 3 3

n n
12 11 12 11

13 14n n n n
k k e k k ek k

e e e e

−

− −
− − += =

− −
  

 
4. Results and discussion 
 
 The influence of the magnetic field and convection on the mean and transient temperature, 
concentration, and velocity is discussed when the plate is subjected to oscillatory temperature, concentration 
and velocity. The numerical values of the Prandtl number Pr, Grashoff number Gr, modified Grashoff number 
Gc, Schmidt number Sc, fluctuation frequency ω , permeability parameter K, and Hartmann number M are all 
computed. The Prandtl numbers are chosen to be around .0 71  and 7 , that represent air and water at 20 C , 
respectively. The Schmidt number values have been chosen to represent the most prevalent diffusing chemical 
species of interest in air and water. Sc values are . , .0 60 1 002 , and 617  in air and water, respectively, 

representing the species 2H O , 2CO , and 2Cl  in air and water at 25 C  and one atmospheric pressure. The 
species are thought to be in low abundance. The values for Gr, Gc, M, K, and are chosen at random. 
 
(a) Mean flow 
 
 Equation (3.12) gives the mean flow velocity. Figure 1 depicts this velocity component. The graphic 
shows that for the same value of M, the mean flow velocity drops as the Grashoff number increases. The mean 
flow velocity decreases when the magnetic field parameter M is increased up to the mid half of the channel, 
then drops towards the plate at y b= , but the permeability K has the opposite effect. It can also be seen in the 
graph that it rises with rising Gc. 
 It is critical to understand the impact of the Grashoff numbers and magnetic field on the mean-skin 
friction at    y 0=  after learning about the mean flow velocity field. It is provided by: 
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*

*
*

* ,
y 0

du
dy =

 
τ = μ  

 
 (4.1) 

 
and in non-dimensional form it is given by: 
 

  * it0 1

0 y 0 y 0 y 0

u ub u e
U y y y= = =

     ∂ ∂τ ∂τ = = = + ε     μ ∂ ∂ ∂     
. (4.2) 

 

 
 

Fig.1. Mean velocity profiles. 
 

 
 

Fig.2. Mean skin friction. 
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Denoting the mean skin friction by: 
 

  0
m

y 0

du
dy =

 
τ =  

 
. (4.3) 

 
Substituting Eq.(3.12) in Eq.(4.3), we have: 
 

  ( ) ( )
m 1 2

2

Gr Gc
k k d 1M

K

+
τ = − −

+
. (4.4) 

 
 Figure 2 shows the average skin friction profile. There is an increase in the mean skin friction as Gc 
and Gr both increase, but M has the opposite effect. It is also noted that as K increases, the skin friction reduces. 
Physically, porous media do not allow the fluid to pass through them. It is worth noting that the increase in Gr 
and Gc has a greater impact on the mean skin friction.  
 
(b) Unsteady flow 
 
 Equations (3.10)-(3.15) produce the temperature and velocity field, which may now be represented in 
terms of fluctuating parts as follows: 
 
  ( ) ( ) ( ), it

0 r iu y t u y e N iN= + ε + ,  (4.5) 
 
  ( ) ( ) ( ), it

0 r iy t y e Q iQθ = θ + ε + , (4.6) 
 
  ( ) ( ) ( ), it

0 r iC y t C y e C iC= + ε + , (4.7) 
 
where: 
 
  ( ) ( ) ( ), ,r i 1 r i 1 r i 1N iN u y Q iQ y C iC C y+ = + = θ + = . (4.8) 
 
For /t 2= π , we can generate the following formulas for the transient velocity, temperature, and concentration: 
 
  ( ) ( ), / 0 iu y 2 u y Nπ = − ε , (4.9) 
 
  ( ) ( ), / 0 iy 2 y Qθ π = θ − ε , (4.10) 
 
  ( ) ( ), / 0 iC y 2 C y Cπ = − ε . (4.11) 
 
 The transient velocity profiles for .Pr 0 71= ,  .Sc 0 60=  ( 2H O ), and  .Gc 0 2=  are presented in Fig.3 
for a tiny value of  .0 2= . Because the buoyancy force rises in the upward direction, the graph shows that there 
is an increase in the transient velocity with an increase in Gr and Gc. The image also shows that as the magnetic 
field parameters M, K grow, the velocity drops until it reaches the middle part of the channel, where it reverses. 
This is because the flow is resisted by the porous material, resulting in a decrease in velocity. 
 Figure 4 shows the impact of Gc and the magnetic field parameter M on the transient velocity profile 
with fixed values of .Pr 0 71= ,   ,Gr 5=   .Sc 1 002=  ( 2CO ). As shown in the graph, the transient velocity 



196  Effect of MHD on unsteady oscillatory Couette flow through … 

increases as Gc increases. As the magnetic field parameter M intensity increases, the transient velocity 
decreases. Up to the center portion of the channel, the velocity reduces slightly due to a rise in K, but then 
increases near the opposite plate at   y b= . Figure 5 shows the transient velocity for  Sc 617= ( 2Cl ) in water 
with fixed values of other parameters. It has been discovered that when the frequency of oscillations increases 
ω , the velocity increases. The image also shows that as M and K are increased, velocity drops up to half of the 
channel, then reverses. The transient temperature is depicted in Figure 6. For air and water the transient 
temperature rises with increasing frequency of fluctuations up to   .y 0 4= , then rises with distance y. Near the 
plate, temperature values are higher, and the effect reverses as you go away from the plate. It has also been 
discovered that as you get further away from the plates, the temperature declines. 
 

 
 

Fig.3. Transient velocity profiles for . ,0 2ε =  /t 2= π ,  .Pr 0 71= (air),   Gc 2= ,   .Sc 0 60=  ( 2H O ). 
 

 
 

Fig.4. Transient velocity profiles for . ,0 2ε =  /t 2= π ,  .Pr 0 71= (air),   Gr 5= ,   5ω=  ( )2  . COSc 1 002= . 
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Fig.5. Transient velocity profiles for . ,0 2ε =  /t 2= π ,   Gr 5= ,   Gc 5= ,  Pr 7=  and   Sc 617=  (water). 
 

 
 

Fig.6. Transient temperature profiles for . ,0 2ε =  and /t 2= π . 
 

 Figure 7 shows the transient concentration profile. For the same values of ω, it is seen that the transitory 
concentration rises as Sc rises. In the case of 2CO , the magnitude of concentration is greater than in the case 
of 2H O . The image also shows that concentration falls as you get further away from the plates. 
It is now proposed to investigate the phase and amplitude behaviours of the skin friction. We get from Eqs 
(4.2), (4.4), and (3.15). 
 
  [ ]it

m 3 13 3 14 7 1 8 1 9 2 10 2e n k n k k n k n k n k nτ = τ + ε − + − + − . (4.12) 
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Equation (4.12) can be expressed in terms of the phase and amplitude of the skin friction as: 
 
  cos( )m T tτ = τ + ε + ϕ , (4.13) 
where:  
  r iT T iT= + = coefficients of iteε in Eq.(4.12) 
 

  2 2
r iT T T= + ,       and      tan /i rT Tϕ = . 

 

 
 

Fig.7. Transient concentration profiles for . ,0 2ε =  and /t 2= π . 
 

In Fig.8., the amplitude of skin friction T  is shown for Pr 7=  (water)  5ω =  and  Sc 617= ( 2Cl ). The figure 
shows that T  increases as Gc and Gr increase. It also decreases slightly with an increase in M. 
 

 
 

Fig.8. Amplitude of skin friction Pr 7=  (water),  Sc 617= ( 2Cl ) and  5ω = . 
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Figure 9 shows the tangent of phase of the skin friction for Pr 7=  (water),   5ω =  and  Sc 617= ( 2Cl ). The 
phase of the skin friction increases as Gr increases, whereas Gc has the opposite effect. For the same value of 
Gr, it is almost constant for M and Gc. 
 

 
 

Fig.9. Phase of skin friction for Pr 7= ,   5ω =  and  Sc 617= .  
 
Now we will examine how the rate of heat transfer is affected by ω. The Nusselt number can be used to 
calculate the rate of heat transfer. 
 

  ( )
*

* *
it0 1

y 0 y 0 y 00 b

q bNu e
y y yk T T

ω

= = =

     ∂θ ∂θ∂θ= − = = + ε     ∂ ∂ ∂−      
  (4.14) 

 
  [ ]it

u 3 1 4 1N 1 e k n k n= − + ε − . (4.15) 
 
We can express (4.15) in terms of phase and amplitude of heat transfer as:  
 
  cos( )Nu 1 H t= − + ε + ψ  (4.16) 
where:  
  r iH H iH= + = coefficients of ε eit  in expression (4.16)  
 
  2 2

r iH H H= +      and     tan /i rH Hψ = . 
 
Figure 10 depicts the phase and amplitude of heat transmission for different values of ω, which increase the 
phase and amplitude of heat transfer, but for   Pr 7=  the phase of heat transfer is not constant. For the same 
quantities of the frequency of fluctuations ω, the phase and the amplitude of heat transfer in air ( .Pr 0 71= ) is 
smaller than that in water ( ).Pr 7=  
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Fig.10. Amplitude and phase of heat transfer. 
 
Nomenclature 
 
 B   − applied magnetic field 

 *C  − dimensional species concentration 

 D  − mass diffusivity 
 g  − acceleration due to gravity 

 Gc  − Modified Grashoff number based on concentration 
 Gr  − Grashoff number 
 k  − permeability of porous medium 

 M  − Hartmann number 
 Nu  − Nussult number 

 Pr  − Prandtl number 
 wq  − heat flux at wall 

 Sc  − Schmidt number 

 *t  − time period 
 bT  − temperature at the plate 

 u  − velocity in the clear fluid  
 U  − velocity in free stream  
 0U  − constant amplitude of free stream velocity 

 α  − the thermal diffusivity 
 θ  − dimensionless temperature 
 ε  − amplitude of oscillations 

 κ  − thermal conductivity  
 μ  − viscosity 
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 v  − kinematic viscosity 
 ρ  − density 

 σ  − electrical conductivity 
 τ  − skin friction 
 mτ  − mean skin friction 

 ω  − frequency 
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