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The influence of slip parameter, viscous dissipation, and Joule heating parameter on MHD boundary layer 
nanofluid flow over a permeable wedge-shaped surface was analysed. The PDEs and the associated boundary 
conditions were transformed to a set of non-similar ODEs and the obtained system of equations was solved 
numerically with the help of the spectral quasi-linearization method (SQLM) by applying suitable software. This 
method helps to identify the accuracy and convergence of the present problem. The current numerical results were 
compared with previously published work and are found to be similar. The fluid velocity, fluid temperature, and 
nanoparticle concentration within the boundary layer region for various values of the parameters such as the slip 
effect, magnetic strength, Prandtl number, Lewis number, stretching ratio, viscous dissipation, suction, Brownian 
motion, Joule heating, heat generation, and thermophoresis are studied. It is observed that the Brownian motion, 
Joule heating, viscous dissipation, and thermophoresis lead to decreases in the heat and mass transfer rate. The skin 
friction coefficient enhances with slip, magnetic, permeability, and suction parameters, but reduces with the 
Brownian motion, wedge angle, and stretching ratio parameters whereas there is no effect of mixed convection, 
thermophoresis, heat generation parameters, the Prandtl and Eckert number. 
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1. Introduction 
 

Nanofluids have a wide range of applications in the industrial sector because nanometer-sized particles 
have unique physical and chemical characteristics. Nanofluids are composite of a solid-liquid dispersion 
consisting of 1-100 nm-sized nanoparticles or nanofibers. In recent years, nanofluids have attracted great 
interest due to the enhancement of their thermal properties. A lot of research work has been done in this field. 
Water, oil, and ethylene glycol mixtures are known as poor thermal conductivity fluids. These fluids are used 
as a cooling tool that enhances productivity and reduces operating costs. In recent years, for enhancing the 
thermal conductivity of these fluids several researchers have studied suspension of nano/microparticles in 
liquids. But there is no unique fluid model which enhances the thermal conductivity of the fluid. Therefore, 
over the last few decades, different fluid models have been proposed for enhancing the thermal conductivity 
of the fluid. Nanofluid is one such fluid. The concept of nanofluid was first introduced by Choi [1] as an 
advanced type of fluid suspended with the base fluid containing nanometer-sized particles or fibers. 
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Buongiorno [2] found that various factors are responsible for enhancing the thermal conductivity of the 
nanofluid such as nanoparticle size, inertia, Magnus effect, volume fraction of the nanoparticle, particle 
agglomeration, Brownian motion, and thermophoresis. Brownian motion and thermophoresis significantly 
enhance the thermal conductivity of the nanofluid. The two-dimensional laminar BL nanofluid flow over a 
stretching surface is important for various fields such as fiber production, polymer processing, and glass 
production. Falkner and Skan [3] first introduced the concept of the wedge-shaped surface for discussing the 
BL flow. Nagendramma et al. [4] discussed the stretching wedge flow with heat transfer in the presence of a 
magnetic field and viscous dissipation. It is noticed that the unsteady and wedge-angle parameters are 
responsible for the flow separation. Ashwini et al. [5] analyzed the effect of heat generation and thermal 
radiation on an unsteady MHD BL flow over a wedge. Ramesh et al. [6] discussed the MHD BL flow over a 
permeable surface. It is observed that the pressure gradient parameter reduces the thickness of BL. Ibrahim [7] 
investigated the effect of the Brownian motion and thermophoresis on an MHD BL nanofluid flow due to 
porous wedge surfaces. It is noticed that the momentum BL thickness reduces for the increasing values of 
magnetic, permeability, and pressure gradient parameters, but for higher values of Ec, Brownian motion (Nb), 
and thermophoresis Nt parameters enhance the thickness of thermal BL. Nageeb et al. [8] analyzed the BL 
mixed convection nanofluid flow over a moving surface with a magnetic effect. Kashmani et al. [9] 
investigated the Soret and Dufour effects on the BL flow of a nanofluid over a moving wedge and observed 
that the temperature gradient enhances for increasing Soret effect but decreases for increasing Dufour number. 
Waini et al. [10] discussed the effect of the stretching ratio on hybrid nanofluid permeable wedge flow and 
saw that the heat transfer rate is higher in the case of the hybrid nanofluid than the regular nanofluid. Rajab 
Al-Sayagh [11] studied the free convection heat transfer flow over a U-shaped obstacle by taking 2 3Al O -water 
nanofluid. Khan and Pop [12] examined the BL flow past a wedge moving in a nanofluid. Menni et al. [13] 
presented the hydrodynamic and thermal analysis of water, ethylene glycol, and water-ethylene glycol as base 
fluids dispersed by aluminum oxide nano-sized solid particles. In addition, Krishna and his collaborators [14 
-24] studied a nanofluid flow and heat transfers over an infinite vertical plate with Hall and ion slip effect. 
Hence, the present problem has been focused on the MHD BL nanofluid flow over a wedge-shaped geometry 
by applying the Buongiorno model. In this work, the system of governing PDEs of momentum and energy has 
been reduced to non-linear ODEs with boundary conditions by taking appropriate similarity transformations. 
A spectral quasi-linearization method (SQLM) based on a quasi-linearization method has been applied which 
was reported by Motsa et al. [25]. Based on the aforementioned aspect and applications, the present study has 
motivated us to scrutinize the effects of physical parameters on the flow field, temperature, and concentration 
field. Finding the numerical solution encouraged the authors to consider the SQLM. Due to the BL region, the 
effective shape of the solid objects may change leading to changes in pressure distribution, as a result, the 
overall lift and drag forces change. So, the present problem will help to identify the physical parameters which 
are responsible for heat and mass transfer characteristics. Therefore, the fluid flow parameters such as the 
velocity, temperature, and concentration within the BL region and the numerical values of the velocity gradient, 
temperature, and concentration gradient have been discussed graphically and in tabular form. Also, the authors 
have established a correlation among the controlling parameters and the flow characteristics and developed a 
multiple regression model. 
 
2. Mathematical model 
 
 Let us consider a two-dimensional flow over a stretching wedge-shaped geometry. The x-axis is 
considered parallel to the stretching wedge and the y-axis perpendicular to it. It is also assumed that the velocity 
of the wedge is wu , U  is the free stream velocity, wT  is the wall temperature T∞  is the free stream temperature, 
u and v are the velocity components, respectively. A uniform magnetic field 0B  is applied perpendicularly to 
the direction of the fluid flow as shown in Fig.1. From this figure, Ω = βπ  is the total wedge angle and β  is 
the wedge angle parameter which is related to the pressure gradient parameter. 
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Fig.1. Physical model and coordinate system. 
 
The governing equations of the BL nanofluid flow for the present problem are written as follows [2]: 
continuity equation: 
 

  u v 0
x y

∂ ∂+ =
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. (2.1) 

 
momentum equation: 
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energy equation: 
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concentration equation: 
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The boundary conditions are: 
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 Here m is the non-linearity factor and is related to the wedge angle parameter ,β  ( ) 1m
1N N ax

−
=  is 

the velocity slip factor which changes with the distance x , N  is the initial slip factor. The no-slip condition 
is observed for .N 0=  For converting the governing Eqs (2.2)-(2.4) into ordinary differential equations, the 
following transformations have been considered: 
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The converted ordinary differential equations of momentum, temperature ,and concentration are: 
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The modified boundary conditions: 
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The prime denotes derivative with respect to η. 
 The dimensionless parameters such as the magnetic parameter, stretching ratio parameter, Prandtl 
number, Brownian motion parameter, pressure gradient, Eckert number, Lewis number, permeability parameter, 
mixed convection parameter, thermophoresis parameter, Reynold’s number, Joule heating parameter, Grashof 
number, heat generation parameter, suction parameter, and slip parameter respectively are written as: 
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The shear stress, heat flux, and mass flux are defined as: 
 

  , and w w w B
y 0 y 0 y 0

u T Cq k J D
y y y= = =

     ∂ ∂ ∂τ = −μ = − = −     ∂ ∂ ∂     
. 

 
Therefore, the skin friction coefficient fC , the local Nusselt xNu , and local Sherwood numbers xSh  can be 
written as: 
 

  ( ) ( ) ( ) ( ) ( ) ( )Re Re
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Re
x x

f x x
x
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2 2
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′′ ′ ′= − = − θ = − ϕ . 

 
3. Methodology  
 
 Bellman and Kalaba [26] were the first to solve nonlinear ODEs and PDEs by applying the quasi-
linearization method (QLM) about half a century ago. Thus, for numerical solutions, we need to choose an 
appropriate numerical technique. The spectral quasi-linearization method (SQLM) [25] is a combination of 
two methods such as the QLM and the Chebyshev spectral collocation method (CSCM). The QLM is used to 
linearize the non-linear ODEs into linear ODEs. The QLM assumes that the difference between the 
approximate solution at the present iteration and the previous iteration is very small. The quadratic 
convergence property is the advantage of this technique. Three to six iterations are needed for getting five-
digit accuracy if the technique converges. The numerical simulation of the present problem is obtained with 
the help of SQLM [25] which gives highly accurate results. The similarity variable is taken as η → ∞ but the 
present simulation has been performed for a finite domain of 5η = , 5, and 10 for velocity, temperature, and 
concentration profiles respectively. Therefore, the dimensionless velocity, temperature, and concentration 
distribution within the BL asymptotically tend to a free stream velocity to satisfy the far-field boundary 
conditions. All other parameters are considered to be some fixed values for finding the self-similar solution. 
So, applying SQLM, the system of Eqs (2.5)-(2.7) has been transformed into the following iterative sequence 
of linear differential equations 
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where the variable coefficients obtained from the previous iteration are given by:  
 

  , , , , , , ,
*, , , , , , Pr *,0 r 1 r r 2 r r 3 r r 4 r 0 r 2 r

M Ka 1 a F a 2 F a F a b 1 b Q
1 m

+ ′ ′′= = = − β − = = λ = = + 
 

 



6  Influence of slip parameter, viscous dissipation and Joule … 

  
( ), , , , ,

, , , , , ,

Pr , , , Pr , Pr ,

, Pr , Pr , , Pr , Pr .

1 r r r r 3 r 4 r r 5 r r 6 r r

0 r 1 r r 2 r r 3 r 4 r r 5 r r

b F Nb 2Nt b 2EcF b 2JF b b Nb

Nte 1 e Le F e Le F e e Le e Le
Nb

′ ′ ′′ ′ ′ ′= + ϕ + θ = = = θ = θ

′ ′= = = − β = = − βϕ = ϕ

 

 
The terms ( ) ( ) ( ), , ,, ,  and 1 r 2 r 3 rR R Rη η η  are defined as:  
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Evaluating Eqs (3.1)-(3.3) by the collocation points and Chebyshev derivatives we got a vector-matrix form 
such as: 
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The modified boundary conditions are: 
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4. Results and discussion 
 
 The non-linear ODEs of the present problem are solved by applying SQLM. The convergence criteria 
of the solution are performed by the use of solution-based errors. These errors are defined by the differences 
between approximate solutions at the previous and present iteration levels t and t 1+ , respectively. The error 
norms are defined as: 
 
 , , , , , ,max , max and  maxf t 1 i t i t 1 i t i t 1 i t i0 i N 0 i N 0 i N

Error F F Error Error+ θ + ϕ +
≤ ≤ ≤ ≤ ≤ ≤

= − = θ − θ = ϕ − ϕ . 

 
The infinity norms of the residual errors are defined as: 
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  ( )Re PrNts Le F
Nb∞

′′ ′′ ′ϕ = ϕ + θ + ϕ . 

 
 The impact of physical parameters on velocity ( )f ′ η , temperature ( )θ η , and concentration ( )ϕ η profile 

is shown graphically. The numerical values of the skin friction ( )Ref xC , Nusselt number ( )Re
1

x xNu
− 

 
 

, 

and Sherwood number ( )Re
1

x xSh
− 

 
 

 which are equivalent to the rate of velocity ( )f 0′′ , rate of heat transfer 

( )0′θ , and rate of concentration are shown in Tabs 1 and 2, respectively. The computations were done by taking 
N 60=  collocation points and solution-based errors are defined for the convergence of the numerical method.  
 

 
 

Fig.1a. Error infinity norms. 

 
 

Fig.1b. Residual error infinity norms for ( )f η , 

( )θ η  and ( )ϕ η . 
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So, Figs 1a and 1b show the convergence and accuracy of the present problem. Figure 1a represents the infinity 
norms with iterations. The error infinity norm decreases with the increasing number of iterations that confirms 
the convergence of the present method. So the present method converges after six iterations. Figure 1b represents 
the residual error norms of less than 1410−  for ( )f η , ( )θ η  and ( )ϕ η  after five iterations. It is seen that the 
residual error decreases with increasing the iterations. This proves the validity of the present method. The errors 
show that the SQLM is accurate giving errors of less than 1510−  within the sixth iteration. Figures 1a and 1b 
show the convergence and accuracy of the present method. It is observed that the error infinity norm reduces with 
an increase in the number of iterations and after six iterations the method converges. Also, the residual error 
infinity norms reduce against the number of iterations which ensures the accuracy of the method. The SQLM 
achieves an accuracy of order 1510−  after the fifth iteration showing that the method is highly accurate. The 
solution has been obtained by taking .M 5 0= , .Nb 0 1= , .Nt 0 1= , .K 0 2∗ = , 36β =  , Pr .1 0= , .S 10 0= , 

.Le 10 0= , .Ec 0 2= , .Q 0 2∗ = , .J 0 1=  and .0 2λ = . The results have been shown graphically and also in the 
tabular form in the following sub-sections. 
 
4.1. Velocity profile 
 
 Figures 2a-2g demonstrate the effect of the magnetic parameter M , pressure gradient parameter m, 
stretching ratio parameter ε , permeability parameter K∗ , suction (S) parameter, slip parameter A, and wedge 
angle parameter β , on the fluid velocity within the BL region. The velocity profiles show that inside the BL 
region the transport rate decreases with the increasing distance η  of the surface. In all cases, the fluid velocity 
within the BL region vanishes at a certain distance from the surface ( )at 5η = . 
 

 
  

 
Fig.2a. Velocity profile with η  for the 

variation of M. 
Fig.2b. Velocity profile with η  for the variation Nb. 

 
This figure demonstrates that within the BL region the fluid velocity enhances for rising values of m and ε  but 
a reverse trend has been observed for the magnetic parameter, permeability parameter, wedge angle parameter, 
suction parameter, and slip parameter, respectively. From Eq.(2.2), the parameter M can be explained by the 
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term ( )
2

0B U uσ
−

ρ
. This term is the combination of two forces such as the pressure force 

2
0B U

 σ
  ρ 

 and 

Lorentz force 
2

0B u
 σ
  ρ 

. When the Lorentz force dominates the pressure force ( )u U∞> , then the fluid 

velocity decreases within the BL region.  
 

 
  

 
Fig.2c. Velocity profile with η  for 

the variation ε . 
Fig.2d. Velocity profile with η  for 

the variation K∗  
  

 
 

 
 

Fig.2e. Velocity profile with η  for 
the variation S. 

Fig.2f. Velocity profile with η  for 
the variation β . 
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The physical behavior of the parameter ε  is that when the surface velocity dominates on the free stream 
velocity then fluid velocity is enhanced. The higher values of the parameter K∗  cause higher resistance 
against the fluid motion and as a result the velocity of fluid decreases. The physics of the parameter β  is 
that the uplifting values of this parameter mean to increase the shape and size of the wedge-shaped geometry 
and as a result the fluid velocity decreases. Due to slip conditions, the velocity of flow near the surface is 
not the same as the stretching surface velocity. With the increase in A the slip velocity increases and therefore 
fluid velocity reduces within the BL region because due to the slip condition, the pulling of the stretching 
surface can be only partly transmitted to the fluid. It is seen that A has a substantial effect on the fluid flow 
properties. Therefore, from these figures, it is noticed that the BL thickness enhances for uplifting values of 
M, K∗ , β , A and S because the velocity of fluid decreases within the BL region but a reverse result arises 
for the parameters m and ε respectively. 
 

 
 

Fig.2g. Velocity profile with η  for the variation A. 
 
4.2. Temperature profile 
 
 Figures 3a-3g present the temperature distribution for different values of the thermophoresis 
parameter Nt, Brownian motion Nb, Joule heating parameter J, suction parameter S, heat generation 
parameter Q∗ , slip parameter A, and viscous dissipation parameter Ec. From these figures, it is observed 
that the temperature within the BL region decreases by enhancing the values of S. The temperature within 
the BL region enhances for uplifting values of the Brownian motion and thermophoresis parameters because 
the nanoparticles within the fluid are moved randomly, as a result, the collision between nanoparticles and 
fluid molecules accelerates. For this reason, the kinetic energy is transformed into thermal energy and as a 
result the temperature within the BL region is enhanced. A similar result arises for the Joule heating, Eckert 
number, and heat source parameters because extra heat is produced as a result of the fluid particles moving 
from a hotter region to a cooler region which causes quicker heat transfer from the hotter surface to the 
surrounding fluid. Thus, it is seen that the thermal BL thickness enhances for the parameters Nb, Nt, J, Q∗ , 
A and Ec respectively because the temperature gradient decreases but a reverse results are observed for the 
variation of the suction parameter. 
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Fig.3a. Temperature profile with η  for the 
variation of Nt. 

Fig.3b. Temperature profile with η  for the 
variation of Nb. 

 
 

 

 
 
 

 
 

Fig.3c. Temperature profile with η  for the 
variation of J. 

Fig.3d. Temperature profile with η  for the 
variation of S. 
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Fig.3e. Temperature profile with η  for the 

variation of Q∗ . 

Fig.3f. Temperature profile with η  for the variation 
of Ec. 

 

 
 

Fig.3g. Temperature profile with η  for the variation of A. 
 
4.3. Concentration profile 
 
 The variations of the Prandtl number Pr, Lewis number Le, Brownian motion Nb, thermophoresis 
parameter Nt, heat source parameter Q∗  and suction parameter S on concentration profile are depicted in Figs 

4a-4f. The concentration reduces within the BL region for uplifting values of Pr, Le, Nb, Q∗  and S, respectively, 
but increases for rising values of Nt. This happens due to the random motion of the nanoparticles and as a 
result concentration decreases. The concentration enhances within the BL region because the thermophoresis 
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accelerates the fluid particles. As a result particles move quickly from the hotter area to the surrounding cold 
area. The uplifting values of the Lewis number mean reducing the mass diffusivity which causes a decrease in 
concentration. From concentration profiles, it is noticed that the BL thickness of concentration reduces for an 
increment of Pr, Le, Nb, Q∗  and S but a reverse trend arises for the parameter Nt. 
 

 
 

 
 

Fig.4a. Concentration profile with η  for the 
variation of Pr. 

Fig.4b. Concentration profile with η  for the 
variation of Le. 

 
 

 
 

  
Fig.4c. Concentration profile with η  for the 

variation of Nb. 
Fig.4d. Concentration profile with η  for the 

variation of Nt. 
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Fig.4e. Concentration profile with η  for the 

variation of Q∗ . 

Fig.4f. Concentration profile with η  for the 
variation of S. 

 
4.4. Velocity, temperature and concentration gradient 
 
 The numerical values of velocity, temperature, and concentration gradients are displayed in Tab.1 for the 
dimensionless parameters. From this table, it is noticed that the velocity gradient reduces for ε but enhances for 
K∗ , M, β , and S whereas there is no effect for λ , Nb, Nt, J and Ec. There is no effect of the parameter K∗  on 

the temperature gradient but the parameters ε , K∗ , M, λ , Nt, A and J decrease the temperature gradient, whereas 
β , S, and Ec increase the temperature gradient. The mass transfer rate enhances for enhancing the values of Nb 

and S but reduces for Nt. On the other hand, ε , β , λ , K∗  and M do not affect the mass transfer rate.  
 
Table 1. Computed values of velocity, temperature, and concentration gradient for different values of the 

mentioned parameters. 
 

ε  K∗  M β  λ  S Nb Nt A J Ec ( )f 0′′ ( )0′−θ  ( )0′−ϕ  

0.0 0.2 10.0 0.2 0.2 10.0 0.2 0.2 0.2 0.1 0.2 3.4952 1.3081 -3.7598 

0.1 0.2 10.0 0.2 0.2 10.0 0.2 0.2 0.2 0.1 0.2 3.1469 1.0126 -3.8490 

0.2 0.2 10.0 0.2 0.2 10.0 0.2 0.2 0.2 0.1 0.2 2.7993 0.7192 -3.9368 

0.2 0.1 10.0 0.2 0.2 10.0 0.2 0.2 0.2 0.1 0.2 2.6920 0.8047 -3.8857 

0.2 1.0 10.0 0.2 0.2 10.0 0.2 0.2 0.2 0.1 0.2 2.7049 0.7945 -3.8938 

0.2 1.5 10.0 0.2 0.2 10.0 0.2 0.2 0.2 0.1 0.2 2.7118 0.7890 -3.8978 

0.2 0.5 1.0 0.2 0.2 10.0 0.2 0.2 0.2 0.1 0.2 2.6935 0.8035 -3.8867 

0.2 0.5 5.0 0.2 0.2 10.0 0.2 0.2 0.2 0.1 0.2 2.7464 0.7615 -3.9152 

0.2 0.5 10.0 0.2 0.2 10.0 0.2 0.2 0.2 0.1 0.2 2.7993 0.7192 -3.9368 
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Cont. Table 1. Computed values of velocity, temperature, and concentration gradient for different values of 
the mentioned parameters. 

 

 
5. Comparison 
 
 To ensure the validity of the present results they are compared with Mohammadi et al. [27] in Tab.2. 
From this table, it is concluded that the results show a good agreement under particular cases. This comparison 
ensures the validity of the present problem. 
 
Table 2. Comparison of temperature gradient for different values of Pr when other parameters are zero. 
 

 Mohammadi et al. Present results Presentence of error 
Pr -θ'(0) - θ'(0) - θ'(0) 

0.72 0.501508 0.5044 -0.6% 
6.0 1.107140 1.0912 -0.0014% 

10.0 1.317881 1.3215 0.3% 
 

ε  K∗  M β  λ  S Nb Nt A J Ec ( )f 0′′ ( )0′−θ  ( )0′−ϕ  

0.2 0.5 10.0 0.0 0.2 10.0 0.2 0.2 0.2 0.1 0.2 2.8066 0.7126 -3.9401 

0.2 0.5 10.0 0.1 0.2 10.0 0.2 0.2 0.2 0.1 0.2 2.8031 0.7159 -3.9385 

0.2 0.5 10.0 0.3 0.2 10.0 0.2 0.2 0.2 0.1 0.2 2.7946 0.7237 -3.9345 

0.2 0.5 10.0 0.2 0.2 10.0 0.2 0.2 0.2 0.1 0.2 2.8007 0.7181 -3.9374 

0.2 0.5 10.0 0.2 0.5 10.0 0.2 0.2 0.2 0.1 0.2 2.8007 0.7179 -3.9375 

0.2 0.5 10.0 0.2 1.0 10.0 0.2 0.2 0.2 0.1 0.2 2.8007 0.7176 -3.9376 

0.2 0.5 10.0 0.2 0.2 5.0 0.2 0.2 0.2 0.1 0.2 2.4095 0.5652 1.9574 

0.2 0.5 10.0 0.2 0.2 7.0 0.2 0.2 0.2 0.1 0.2 2.5853 0.6559 2.7381 

0.2 0.5 10.0 0.2 0.2 10.0 0.2 0.2 0.2 0.1 0.2 2.8007 0.7181 -3.9374 

0.2 0.5 10.0 0.2 0.2 10.0 0.1 0.2 0.2 0.1 0.2 2.8007 0.7181 7.8762 

0.2 0.5 10.0 0.2 0.2 10.0 0.3 0.2 0.2 0.1 0.2 2.8007 0.7181 2.6244 

0.2 0.5 10.0 0.2 0.2 10.0 0.5 0.2 0.2 0.1 0.2 2.8007 0.7181 1.5740 

0.2 0.5 10.0 0.2 0.2 10.0 0.2 0.1 0.2 0.1 0.2 2.8007 0.7204 1.9676 

0.2 0.5 10.0 0.2 0.2 10.0 0.2 0.3 0.2 0.1 0.2 2.8007 0.7159 5.9078 

0.2 0.5 10.0 0.2 0.2 10.0 0.2 0.5 0.2 0.1 0.2 2.8007 0.7115 9.8507 

0.2 0.5 10.0 0.2 0.2 10.0 0.2 0.2 0.1 0.1 0.2 4.3097 1.3215 -3.8338 

0.2 0.5 10.0 0.2 0.2 10.0 0.2 0.2 0.2 0.1 0.2 2.8007 0.7181 -3.9374 

0.2 0.5 10.0 0.2 0.2 10.0 0.2 0.2 0.3 0.1 0.2 2.0745 0.4407 -3.9870 

0.2 0.5 10.0 0.2 0.2 10.0 0.2 0.2 0.2 0.10 0.2 2.8007 0.7181 -3.9374 

0.2 0.5 10.0 0.2 0.2 10.0 0.2 0.2 0.2 0.15 0.2 2.8003 0.5410 -3.9926 

0.2 0.5 10.0 0.2 0.2 10.0 0.2 0.2 0.2 0.20 0.2 2.7999 0.3631 -4.0470 

0.2 0.5 10.0 0.2 0.2 10.0 0.2 0.2 0.2 0.1 0.2 2.7995 0.7192 -3.9368 

0.2 0.5 10.0 0.2 0.2 10.0 0.2 0.2 0.2 0.1 0.4 2.8002 1.7728 -3.7468 

0.2 0.5 10.0 0.2 0.2 10.0 0.2 0.2 0.2 0.1 0.6 2.8010 2.8151 -3.5633 
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6. Correlation and regression analysis of local skin friction coefficient 
 

 From Tab.3, it is observed that the velocity gradient is positively correlated with the parameters K∗ , M, 
and S, but negatively correlated with ε  and A, whereas there is no correlation with β , λ , Nb, Nt, J, and Ec.  
 

Table 3. The correlation coefficient of the velocity, temperature, and concentration gradient for the mentioned 
parameters. 

 

 ε  K∗  M β  λ  S Nb Nt A J Ec ( )f 0′′  ( )0′θ  ( )0′ϕ  

ε  1.0              

K∗  0.3 1.0             
M -0.1 0.0 1.0            
β 0.0 0.0 0.0 1.0           

λ  0.1 0.0 0.1 0.0 1.0          
S -0.1 0.0 -0.1 0.0 0.1 1.0         

Nb 0.0 0.0 0.0 0.0 0.0 0.0 1.0        
Nt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0       
A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0      
J 0.1 0.0 0.1 0.0 -0.1 0.1 0.0 0.0 0.0 1.0     

Ec 0.1 0.0 0.1 0.0 -0.1 0.1 0.0 0.0 0.0 -0.1 1.0    

( )f 0′′  -0.4 0.2 0.1 0.0 0.0 0.3 0.0 0.0 -0.8 0.0 0.0 1.0   

( )0′θ  -0.2 -0.1 0.0 0.0 -0.1 0.1 -0.2 -0.3 -0.3 -0.2 -0.9 0.3 1.0  

( )0′ϕ  0.1 0.0 0.1 0.1 -0.1 -0.3 0.1 0.5 0.0 -0.1 -0.1 -0.1 -0.2 1.0 

 
Table 4. The multiple regression of the velocity gradient for the mentioned parameters. 
 

Regression Statistics 
Multiple R 0.96      
R Square 0.91      

Adjusted R Square 0.87      
Standard Error 0.12      
Observations 33.00      

 df SS MS F Significance F  
Regression 11.00 3.32 0.30 20.08 0.00  
Residual 21.00 0.32 0.02    

Total 32.00 3.63     
 Coefficients Standard Error t-Stat P-value Lower 95% Upper 95% 

Intercept 4.83 0.37 12.97 0.00 4.05 5.60 

ε  -3.17 0.61 -5.22 0.00 -4.44 -1.91 

K∗  -0.07 0.10 -0.74 0.47 -0.28 0.13 
M 0.02 0.01 1.23 0.23 -0.01 0.04 
β  0.06 0.51 0.11 0.91 -1.00 1.12 

λ  -0.04 0.15 -0.27 0.79 -0.35 0.27 
S 0.08 0.02 3.77 0.00 0.04 0.13 

Nb -0.07 0.38 -0.20 0.85 -0.86 0.71 
Nt -0.07 0.38 -0.20 0.85 -0.86 0.71 
A -11.18 0.87 -12.90 0.00 -12.98 -9.37 
J -0.34 1.15 -0.29 0.77 -2.72 2.05 

Ec -0.08 0.29 -0.29 0.78 -0.68 0.51 
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 The temperature gradient is positively correlated with the suction parameter and negatively correlated 
with ,ε  K∗ , Nb, Nt, A, J and Ec but there is no correlation with M and β . The mass transfer rate is positively 
correlated with ε , M, β , Nb, Nt, and negatively correlated with λ , S, J and Ec but there is no correlation with 

K∗  and A, respectively. It is also seen that the velocity gradient is positively correlated with the temperature 
gradient and negatively correlated with the concentration gradient. The temperature gradient is negatively 
correlated with the concentration gradient. 
 From Table 4 the multiple regression model for the velocity gradient can be written as 
 

  ( ) *. . . . . . .
. . . . . . .

f 0 4 83 3 17 0 02M 0 06 0 07K 0 06 0 04
0 07 Nb 0 07 Nt 11 18 A 0 08S 0 34J 0 08Ec

′′ = − ε + + β − + β − λ +
− − − + + −

 

 
From Table 5, the multiple regression model for temperature gradient can be written as  
 

  ( ) * *. . . . . . . . .
. . . . .
0 1 26 2 85 0 01M 0 12 0 04K 0 6Q 0 08Nb 0 1Nt 4 4 A

3 88J 0 04 0 03S 5 17Ec

′θ = − ε − + β + − − − − −
+ − λ + +

 

 
Table 5. The multiple regression of the temperature gradient for the mentioned parameters. 
 

Regression Statistics 
Multiple R 1.00      
R Square 0.99      

Adjusted R Square 0.99      
Standard Error 0.05      
Observations 33.00      

 df SS MS F Significance F  
Regression 11.00 6.07 0.55 216.09 0.00  
Residual 21.00 0.05 0.00    

Total 32.00 6.12     
 Coefficients Standard Error t-Stat P-value Lower 95% Upper 95%

Intercept 1.26 0.15 8.23 0.00 0.94 1.58 
ε  -2.85 0.25 -11.37 0.00 -3.37 -2.33 

K∗  0.04 0.04 0.86 0.40 -0.05 0.12 
M -0.01 0.01 -1.10 0.28 -0.02 0.01 
β  0.12 0.21 0.59 0.56 -0.31 0.56 
λ  -0.04 0.06 -0.69 0.50 -0.17 0.09 
S 0.03 0.01 3.80 0.00 0.02 0.05 

Nb -0.08 0.16 -0.49 0.63 -0.40 0.25 
Nt -0.10 0.16 -0.63 0.54 -0.42 0.23 
A -4.40 0.36 -12.33 0.00 -5.15 -3.66 
J -3.88 0.47 -8.22 0.00 -4.86 -2.90 

Ec 5.17 0.12 43.76 0.00 4.92 5.41 
 
The multiple regression model for the concentration gradient can be written as 
 

  ( ) *. . . . . . . . .
. . . .
0 1 93 12 82 0 26M 6 68 0 95K 4 8Nb 35 73Nt 0 77 A 25 09J

5 06 Ec 3 01 0 99S

′ϕ = − + ε + + β − + + − − +
− − λ −
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Table 6. The multiple regression of the concentration gradient for the mentioned parameters. 
 

Regression Statistics 
Multiple R 0.67      
R Square 0.44      

Adjusted R Square 0.15      
Standard Error 3.56      
Observations 33.00      

 df SS MS F Significance F  
Regression 11.00 212.92 19.36 1.53 0.19  
Residual 21.00 265.83 12.66    

Total 32.00 478.75     
 Coefficients Standard Error t-Stat P-value Lower 95% Upper 95% 

Intercept -1.93 10.81 -0.18 0.86 -24.41 20.55 
ε  12.82 17.63 0.73 0.48 -23.85 49.48 

K∗  -0.95 2.91 -0.33 0.75 -7.01 5.11 
M 0.26 0.36 0.72 0.48 -0.49 1.01 
β  6.68 14.77 0.45 0.66 -24.04 37.40 
λ  -3.01 4.34 -0.69 0.49 -12.03 6.01 
S -0.99 0.64 -1.54 0.14 -2.31 0.34 

Nb 4.80 10.95 0.44 0.67 -17.97 27.57 
Nt 35.73 10.95 3.26 0.00 12.96 58.50 
A -0.77 25.16 -0.03 0.98 -53.08 51.55 
J -25.09 33.26 -0.75 0.46 -94.25 44.07 

Ec -5.06 8.31 -0.61 0.55 -22.35 12.23 
 
7. Conclusions 
 
 A boundary layer nanofluid slip flow over a stretching permeable wedge-shaped surface with viscous 
dissipation and Joule heating effect has been investigated numerically by using the SQLM with MATLAB 
software. From the simulations, the following conclusions can be drawn. 

• The SQLM scheme by using the Chebyshev collocation method provides a more accurate and quicker 
convergence scheme. 

• The momentum boundary layer thickness enhances with increasing values of the magnetic parameter, 
permeability parameter, and suction parameter but reduces for the Brownian motion, wedge angle 
parameter, and stretching ratio parameter. 

• The thermal boundary layer thickness enhances with increasing values of the Brownian motion, 
thermophoresis parameter, Eckert number, Joule heating parameter, and heat generation parameter but 
squeezes for the suction parameter. 

• The concentration boundary layer thickness enhances with increasing values of the thermophoresis 
parameter but shrinks with the Prandtl number, Lewis number, Brownian motion, heat generation 
parameter, and suction parameter. 

• The skin friction coefficient increases by 4%, 5%, and 82% due to increasing the magnetic parameter 
( ). .5 0 15 0−  and suction parameter ( ). .10 0 20 0−  respectively. On the other hand, increasing the 

stretching ratio parameter ( ). .0 0 0 4− , wedge angle parameter ( )36 72−  , and Brownian motion 

( ). .0 4 0 6−  decreases the skin friction by 39.7%, 5% and 93.5% respectively. 
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• For rising values of the stretching ratio parameter ( ). .0 0 0 4−  and suction parameter ( ). .10 0 20 0− , the 
heat transfer rate enhances by 3.5% and 70%, but for the Brownian motion ( ). to .0 4 0 6 , 
thermophoresis ( ). .0 3 0 7−  and wedge angle parameter ( ). to .0 3 0 7  decrease the heat transfer rate by 
133%, 125%, and 4%, respectively. 

• The skin friction coefficient is positively correlated with the magnetic parameter, permeability 
parameter, and suction parameter, but negatively correlated with the Brownian motion, wedge angle 
parameter, and stretching ratio parameter whereas there is no correlation with the mixed convection 
parameter, thermophoresis parameter, heat generation parameter, Prandtl number, and Eckert number.  

• The temperature gradient is positively correlated with the magnetic parameter, permeability parameter, 
suction parameter, and stretching ratio parameter, but negatively correlated with the wedge angle 
parameter, Brownian motion, thermophoresis parameter, Eckert number, Joule heating parameter, and 
heat generation parameter, whereas there is no correlation with the mixed convection parameter. 

• The concentration gradient is positively correlated with the Brownian motion, thermophoresis 
parameter, suction parameter, and Lewis number, but negatively correlated with the magnetic 
parameter and permeability parameter, whereas there is no correlation with the mixed convection 
parameter. 

 
Nomenclature 
 
 A – velocity slip parameter 

 a – initial stretching constant 

 b – free stream constant 

 0B  – strength of the magnetic field, A m  

 BL – boundary layer 

 C – nanoparticle concentration, 3kg m  

 fC  – skin friction coefficient 

 wC  – surface concentration, 3kg m  

 C∞  – free stream concentration 

 BD  – coefficient of Brownian motion, 2cm s  

 BD  – coefficient of thermophoresis  

 J – Joule heating parameter 

 K – permeability, 2m  

 K∗  – permeability parameter 

 g – acceleration due to gravity, 2m s  

 Le – Lewis number 

 M – magnetic parameter 

 m – power-law index 

 MHD – magnetohydrodynamic 

 N – initial slip factor 

 Nb – Brownian motion 
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 Nt – thermophoresis parameter 

 xNu  – local Nusselt number 

 ODEs – ordinary differential equations 

 PDEs – partial differential equations 

 Pr – Prandtl number 

 Q∗  – heat generation parameter 

 xSh  – local Sherwood number 

 SQLM – spectral quasi-linearization method 

 T – fluid temperature, 

 wT  – surface temperature, 

 T∞  – free stream temperature 

 u – velocity component, m s  

 U – free stream velocity 

 α  – base fluid thermal diffusivity, 2m s  

 β  – wedge angle parameter 

 ∗β  – coefficient of thermal expansion 

 ε  – stretching ratio parameter 

 v  – fluid kinematics viscosity, 2m s  

 v  – y-axis velocity component, m s ms-1 

 τ  – ratio of the effective heat capacity 

 ρ  – fluid density, 3kg m  

 σ  – electrical conductivity, s m  

 ψ  – stream function 

 Ω  – total wedge angle 
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