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This paper analyses the transverse deflection in a homogeneous, isotropic, visco-thermoelastic beam when
subjected to harmonic load. The ends of the beam are considered at different boundary conditions (both axial ends
clamped, both axial ends simply supported and left end clamped and right end free). The deflection has been studied
by using the Laplace transform. Numerical computation of analytical expression of deflection obtained after Inverse
Laplace transform has been done using MATLAB software. The graphical observations have been discussed under
various boundary conditions for different values of time and length. The above work has applications in design of
resonators.
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1. Introduction

Viscoelastic materials such as plastic materials and polymer science have received great interest due
to numerous applications in modern engineering structures, in which materials are under high temperature.
Lord and Shulman [1] formulated the theory of thermoelasticity which incorporated the coupling between
temperature and strain rate. Christensen [2] discussed the stress-strain constitutive relations and described
thermoviscoelastic stress. Drozdov [3] derived a model for thermoviscoelastic materials which takes into
consideration the changes in elastic moduli and relaxation times.

Guo [4] studied the effect of a thermoelastic coupling on the wave characteristics such as the frequency
ratio and non-dimensional frequency for micro-machined beam resonators. Sun [5] analysed the influence of
a thermoelastic coupling on deflection amplitudes, thermal moment amplitudes for micro-scale beam
resonators. Sun [6] studied the out of plane vibrations of a circular plate resonator under the effects of
thermoelastic damping. Yanping and Yilong [7] applied the neural network method to study the static
deflection in micro-cantilever elastic beam subjected to transverse loading.

Sharma and Grover [8] derived analytical expressions for the thermoelastic damping and frequency
shift in transverse vibrations of a homogenous isotropic, thermoelastic thin beam with voids, based on the
Euler—Bernoulli theory under clamped and simply supported boundary conditions. Grover [9] derived
expressions for transverse vibrations of a homogenous, isotropic, thermally conducting Kelvin-Voigt type
viscothermoelastic thin beam with variable thickness.

Guo et al. [10] analysed the thermoelastic damping using dual-phase-lagging model and studied the
effects of the beam height and aspect ratio. Sharma et al. [11] analysed the wave characteristics under the
effects of temperature, rotation, viscosity and thermal relaxation time in an elastic medium. Sharma and Kaur
[12] analysed the transverse deflection and thermal moment of transverse vibrations in an isotropic, thermo-
elastic beam under the action of harmonic concentrated load. Sharma and Kaur [13] studied the dynamic
response of a homogeneous, transversely isotropic, thermoelastic micro-beam resonator under the action of
time varying load and clamped-clamped conditions at axial ends. Partap and Chugh [14] investigated the
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flexural vibrations of homogeneous isotropic micropolar microstretch thermoelastic thin beam resonators
under the influence of time harmonic load at different boundary conditions of clamped-clamped, simply
supported-simply supported or clamped-free. Thakare er al. [15] analysed the effect of inhomogeneity on
thermal and mechanical behaviour in the two dimensional nonhomogeneous thick hollow cylinder in the
context of fractional order derivative.

In this paper, an attempt has been made to study the dynamic response of a homogeneous isotropic
viscothermoelastic beam under the action of harmonic loading. The Laplace transform technique has been used
twice with respect to time and space domain. The analytical solution for clamped-clamped, simply supported-
simply supported and cantilever-free beams has been evaluated using the method of residues. MATLAB
software has been used for representing the results graphically for comparison.

2. Primary equations

In this paper, a homogeneous isotropic, viscothermoelastic beam has been considered which is initially
at uniform temperature k, and is undeformed. The basic equation of motion has been considered in the
Cartesian coordinate system and is given by

9%V,
L. 2.1
37 (2.1

Gy,j =P

In the context of Lord Shulman [1] model of generalised thermoelasticity, the equation of heat
conduction along with the constitutive relations, in the absence of heat sources and body forces, which govern

the displacement vector v = (V 7-V2,V 3) and temperature change K(x, y,z,t) at time ¢ are given as

6; =N, e +2U,e; —B,Kd; (2.2)
5 ok 9k o 9o’
KV K:pce[§+toa7 +BvK0 5-’-:0? Vv (23)
where
0 0
Av = A(]-f-fogj,uv =M[1+€1 aj,
) ¢
B, =B I+B0§ , BO:(3A50+21,L51)E. (2.4)

3. Modelling of beam structure

We consider a small flexural deflection of a homogeneous isotropic, viscothermoelastic beam of the
following dimensions: length L(0<x<L), width b(—% <y< %), and thickness h(—g <z< gj . In

equilibrium, the beam is under zero stress, zero strain and also kept at stable temperature K,. In accordance

with Euler-Bernoulli assumptions, any plane cross-section, initially normal to the axis of the beam remains flat
and normal after deformation. The displacement vector v and temperature function K are given as

\Z :—z%—D, v,=0, vVv;=D(xt), Kk=x(x,z1¢). 3.1)
X
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Now by substituting Eq.(3.1) in Egs (2.2) and (2.3), we get the following set of equations.

9’D 9°D oK
GU :(A+2]J,)(—Z ax2 J'i‘(/\fo +2M€1)(_ZWJ_B(K+BO gj, (32)
9’k 9°x ok 9°x 9°D ‘D
K|l —+—|=pC,| —+t,— |— t . 33
[axz +822J P e[at T azzJ BVZK‘{aﬁaﬁ ? ax?or’ G3)

Also, the flexural moment of cross section M (x,t) is represented as

hi2
M (x,t)= j bo . zdz .
~h/2
Using Eq.(3.2) we get
M(x t):(A+2u)az—DI+(Af +2Ue;) 9D I+[3(M +B aMKJ (3.4)
’ o’ P dron? o

h
bh’ 3

where [ = N3 and M = J. bxzdz represent the moments of inertia of the cross section and of the beam due
h

2
to thermal effects, respectively. Now taking up the equation of transverse motion of the beam

aZM + pAaz_D
ox’ o’

=q(x.t) (3.5)

where A=bh represents the area of the cross-section and ¢(x,t) represents harmonic loading on beam, so
the equation of motion of the beam reduces to

4 5 2 3 2
M M
(A+2}l)]a—?+(l\€0+2}l€])] J D4+ J 2"+[30a >+ 42 2D=q(x,t). (3.6)
ox otox ox otox ot
Considering non-dimensional quantities
x’:ij D,:B’ Z,:i’ [,:c—lt’ t():c—lto, K':ﬁ,
L h h L L Ky
in Egs (3.3) and (3.6), we get
4 2 5 2 3 2
12 8?_'_5101 8D4 N 8A;[K+CIBOE)M§ +8§)=q 3.7)
1245 \ ox L otox ox L dtox ot
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where
1
2
M= Iszz ,
i
2
°x  ,9°k| 8C,e Lok 9’k zhzclﬁ( Byc; aj o°D EM))
A — e ¢ — 1+ — + 1, 3.8
[axz P2 ) ok o Yo ) LK Lo )aer o) O
where
AR:£, ]2:A+2I.,L, (25:&, 052A60+2u61’
h p p p
3.9
SZ_i §2 =53 B:Bﬂ __al _
clz ’ cj ’ pc; Ahpc,2

Ignoring the primes for the sake of convenience.

4. Initial and boundary conditions

A beam whose edges are either CC, SS or CF, where CC, SS, CF stand for clamped-clamped, simply
supported-simply supported, clamped-free respectively, has been considered and the following conditions

have been taken into account.
Initial conditions are as follows:

pisn-(284) o |

K(x,z,()) = (WJ =0.
t=0

Boundary conditions are considered as

Case I: For CC beam

ox

D(0.1) :LBD(x,t)LO _0. D(],t):[aD(x,z)jFI 0

Case II: For SS beam

ox

D(O,t)z[azD—(zx’t)J =0, D(1,1) =(82D—(Zx’tq =0.

BZD(x,t)

=k(const.),
2
ot LO

.1)

4.2)
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Case III: For CF beam

D(o,t):[%j_ :o,[MJ :[MJ ~0. “3)

ox? o’

5. Laplace transform approach

We apply the Laplace transform to Eqs (3.7) and (3.8) with respect to the time domain, defined as

oo

W(x,s)=je_StD(x,t)dt, and G)(x,z,s):J'e_‘”K(x,Z,t)dt,
0 0

2 4 2
! i 149165 |9 If+ﬁ[1+—clﬁosj—a A/gG +s'W=0, G.D
1245 L )ox L ox
0’0 L 42 RO _ pC.c,Lsy, o— zhzc,[_’)y{)y]s o'W (5.2)
ol R K LK u?
s hi2
—h/2

Q(x,s) is the Laplace transform of load q(x,t) .
Under the conditions that no heat flows through upper and lower surfaces of the beam

a—®=0 at Zzii.
0z 2

The solution of Eq.(5.2) is

2 : 2
@(x,z,s):h By, PR oW where pzz—w. (5.4)

C,I’p pcos( P ] ox?
2

Using Eq.(5.3) to find M and differentiating twice with respect to x, we get

Mg WPy, o'w 24 ( p ( pD
= 1+ where =—| ——tan| — | |. 5.5
o’ IZCELZp( f(p)) ox? /(7) p3 2 2 5:5)

Using Eq.(5.5) in (5.1), we obtain
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I 1 87¢;s BBy
F, +sW = where F. = 1+ +(1+ — |,
" ox? ¢ ’ JzAg( L ) pC

e

SZ

FwW . 0 4_
W CW—FS where (7 = FS (5.6)

Considering harmonic loading on the beam ¢ (x,7) =g, sinwr, we get

qp®
s,t)= .

Applying the Laplace transform with respect to the space domain defined as W (&,s)= J.e_éx W (x,s)dx

0
Eq.(5.6) reduces to

w-g? 5—2'5—3"S—”,s—4_:—q0m ) )
(&7 =8 (0.5)=&W(0,5) =& W (0,5)-W"(0,5) |- LW YRR (5.7)

Using the boundary conditions at x =0 defined by Eqs (4.1)-(4.3) and applying the inverse Laplace
transform with respect to the space domain.

Casel
_alc(cx) GZS(CX) qp0 E(Cx)—2
W= 2€2 + 2C3 +Fs(s2+0)2) 2@4 . (5.8)
Case Il
_ ;8 (&x)  a,S8(Lx) g0 C(Lx)-2
W= T + 20 +FS(S2+®2) 2 (5.9)
Case 111
asC(Cx) agS(Cx) g C(Cx)-2
W= ZCZ 2§3 FS(S2+(02) 2§4 (5.10)
where

C(&x)=cosh(&x)—cos(Lx), S(&x)=sinh({x)-sin({x),

C(Cx)=cosh(Lx)+cos(Lx), S(&x)=sinh(Lx)+sin(Lx).
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Using the boundary conditions at x =/ defined by Eqs (4.1)-(4.3), a set of non-homogeneous linear

equations is obtained and the condition for existence of an infinite solutions is

Case | cos{cosh{=1,
Case 11 sinsinh{ =0,
Case 111 cos{cosh{=—-1.

The respective roots of the Eqs (5.11)-(5.13) are given by

Casel :(;=4.730, {,=7.8532, Ck:[k+§}t, k>3,

Casell :{,=3.1416, (,=62832, (,=km, k=3,

Caselll :C,=1.8751, {,=4.6941, Ck:(k—éjn, k>3,

and solutions for three cases of boundary conditions are given by

Case 1
_ Gy [A1(C)C(Cx)+B,(C)S(Cx)+G1(§)(5(§x)_2)J
27F, (57 + 07 G, (%) :
Case Il
_ Gp® 45 (8)S (6x) + B, (£)S(8x) + 2G5 (£)(C(&x) - 2)
Wh (s o) 6:() =
Case 111
o GO [As(C)C(Cx)+33(C)S(Cx)+Gg(C)(5(Cx)—2)J
27 (7 + o) G;(C)
where

4;(§)=cosh{—cos{—sinh{sin{, B;({)=sinh{(cos{—1)+sin{(cosh{—1),

A, (8)=sinh{(7—-cos{)+sin{(/—cosh{),

B, ({)=sinh{(cos{—1)+sin{(/—cosh{),

(5.11)
(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)
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A;(8) =sinh sin{, B; (§) =—(cosh {sin{ +sinh {cos{),
G;({)=1-cosh{cos{,G,({)=sinh {sin{,G; (L) =cosh{cos{+1.
Taking the inverse Laplace transform with respect to the time domain using the method of residues defined as

D(x,t) =X Residues of "W (x,s), (5.18)

1 C,L gl 1
r:\/1+0)2tg, R:—Jw, O=tan"’| — |,
Ap K i

cos 39 sin(Rcos0)+sin 39 sinh (Rsin@)
_12cos® 24 2 2

R’ R’ cos(RcosB)+cosh(Rsin®)

we can write

Ir

b

_ sin[ 32 sin(Rcos0)— cos 39 sinh (Rsin)
_12sm@ 24 2 2

Ji R’ R’ cos(RcosB)+cosh(Rsin®)

b

: L L

R 2
Cemdiime 1_45:—@{["(%} B(”fze)—zmﬁof] ,

4L 4pC, L L

= 2
=2 | -t B[ {2 e 2

where fy,f; are the real and imaginary parts of f(p) and (z ,(; are the real and imaginary parts of {,
respectively, at s =11®.

Casel

s =0 is removable singularity, residue=0. s =*1® are simple poles and their residues are conjugates of each

other, so the sum of residues is twice the real part of residue of e’ W(x,s) at s=1m. The sum of residues at
s=Hww is

20° T’ +U? T’ +U?

q—o{sin(mt)(<T(P+R)+U(Q+S)) +V]+cos(0)t)(T(Q+S)_U(P+R) + Yn (5.19)
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where

P= [(cosh(CRx)cos(Clx)—cos(CRx)cosh(C,x))(cosh Creosl; —coslpcoshl; +
—sinh {p cosC, sin cosh &, +cosh{psinl; cos{p sinh )] —[(sinh(CRx)sin(Clx)+
+sin{ gxsinh ({,x))(sinh {g sing; +sin{g sinh{; —sinh{p cos§; cos{p sinh§; +

—cosh{psing, sin{y coshcl)],

Q:[(sinh(CRx)sin(Clx)+sin(CRx)sinh(C_,,x))(cosh Creosl; —coslpcoshl, +
—sinh {, cos{; sin{, cosh; +cosh{psin; coslp sinhC,)}+[(cosh(§Rx)cos(§,x)+
—cos({gx)cosh (L, x))(sinh{ sinC; +sin{p sinh{; —sinh {; cos{; cos{ g sinh §; +

—cosh{ysin{, sinl, coshC,)},

R= [(sinh(CRx)cos(Clx) - sin(CRx)cosh(CIx))(sinh CreosC;(coslpcoshl; — 1)+

+cosh{psin{; sinlpsinh {; +sin{y cosh{; (cosh g cosl; — 1)+
—cos{gsinh{; sinh {psin ):I—[(cosh(CRx)sin(C,x)—cos(CRx)sinh(C,x))x
X((cosh§psing; )(cosCy coshl; —1)—(sinh {z cosC; sin{ g sinh§; ) +
+(sin§g cosh{; sinh {psin{; )+ (cos{p sinh §; )(cosh{p cos —1)},

S =[(cosh(CRx)sin(Clx)—cos(CRx)sinh(Clx))(sinhC_,R cos{; (coslpcosh; — 1)+

+cosh{psin{; sin{,sinh {; +sin{z cosh§; (cosh{p cosl; — 1)+
—cos{psinh{; sinh {5 sin{, )]+[(sinh(CRx)cos(CIx)—sin(CRx)cosh(Clx))x
X((cosh g sing;)(cosCp coshl; —1)—(sinh p cos(; sinpsinh §; ) +
+(sin{g cosh{; sinh{psin{; )+ (cos Lz sinh §; ) (cosh{ cosE; —1))],

T =1-cosCpcosh{;coshlycosl; —sin{psinh{; sinh{psin;,
U =sin{psinh{; cosh{ cos{; —cos{y cosh{; sinh{zsin{;,

V =cosh({zx)cos({;x)+cos({zx)cosh({,x)—-2,

Y =sinh({zx)sin (&, x)—sin({zx)sinh (g, x).

Singularities corresponding to G, ({) =0 given by Eq.(5.14) are simple poles. Using Eq.(5.6),

d2cs BB s,Boc g
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where
24 tanh (Pj
. \2)

G e pCulsyy 12
P3

Sy = , A+ [ p=1—-—+
ENETR KA2 peetp?

b

the sum of the residues at s = *is, is equal

4F,qgocos(spr) [ A (5)C () + B, (G4 ) S (Gex) +(C(8ix) = 2) Gy (64) "
Z;k(mz—slf) (sing, cosh{; —cos{; sinh ;)

2BBOBc1(1+S"i”"’)(1+f(p))
pC,L

e

2
x| 25, F, +57 (51;1 ]+ + (5.20)

-1

- 5
p’ p

, 12[1+sec2(§D 36tanh(§j
+BBc,L[1+(S’fBL—OCIJ J(1+2skt0)K"A,;2
Case I1

s =0 is removable singularity, residue=0. s =Z1® are simple poles and their residues are conjugates of each

other, so the sum of residues is twice the real part of residue of e W(x,s)ats =10. The sum of residues at
s =711 is equal

q—otsin(cot){(T(P—kR)+U(Q+S)) +2VJ+

40’ 7’ +U?
(5.21)
+cos(mt)[T(Q+;2)_Z§P+R) +2YD
+

where

P:[(sinh(CRx)cos(Clx)+sin(CRx)cosh(Clx))(sinhCR cos{; (/—cospcosh(,; )+
+sin{ cosh§; (1—cosh{ cosl;)—cosh{,sin{,; sin{, sinh {; +

+cos{psinh; sinh {p sinC,)}—[(cosh(CRx)sin(Clx)+c0s(§Rx)sinh(C,x))><
X(sinh g cos§; sin{ sinh §; +cosh {sin§; (1—cos{ g cosh, )+

—sin{p cosh{; sinh {sin; +cos{y sinh §; (7 —cosh cosf;,))],
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Q:[(cosh(CRx)sin(Clx)+cos(CRx)sinh(C,x))(sinhCR cos{; (I —coslpcosh, )+
+sin{ cosh§; (1—cosh{y cosl;)—cosh,sin{,; sin{ sinh {; +

+cos{psinh {; sinh { sinC,)}+[(sinh(§Rx)cos(§,x)+sin(§Rx)cosh(§,x))><
X(sinh g cos§; sin{p sinh §; +cosh{p sin§; (71— cosg cosh{;)

—sin{p cosh{; sinh {sin; +cos{y sinh §; (7 —cosh cosC,))],

R :[(sinh(CRx)cos(C[x)+sin(CRx)cosh(CIx))(sinhCR cos(; (cosCpcosh{; —1)+
+sin{ cosh§; (1—cosh{ cosC;)+cosh{ysing; sinpsinh§; +
+cos{psinh &, sinh {p sinCI)]—[(—sinhCR cos{; sinpsinh{; +
+cosh{sin; (cos{p coshl; —1)—sin{y cosh{; sinh {sin; +

)
+cos{sinh §; (1—cosh{y cosC,))(cosh(CRx)sin(CIx)—cos(CRx)sinh(CIx))],

S:[(cosh(cRx)sin(Clx)—cos(CRx)sinh(Clx))(sinhCR cos; (cosCgcosh§; — 1)+
+sin{y cosh§; (1—cosh{ cosC;)+coshpsing, sin{, sinh {; +

+cos{gsinh ; sinh {5 sin )]+[(sinh(CRx)cos(C,x)+sin(CRx)cosh(C1x))><
x(—sinh{ g cos{; sin{psinh {; +cosh{psin§; (cosCp cosh§; — 1)+

—sin{ cosh{; sinhCRsinC,+cosCRsinhC,(I—coshCRcosCI))],
T =sinh { cosh{; sin{p cosC; —cosh{psinh{; cos{psin{;,

U =sinh {p sinh {; cos{p cosC; +cosh{z cosh{; sin{,sin{,,

V =cosh({gx)cos({;x)+cos({gx)cosh({,x)-2,

Y =sinh({zx)sin(&;x)—sin({gx)sinh({,x).

Singularities corresponding to G, ({)=0 given by Eq.(5.14) are simple poles. Using Eq.(5.6),

5 82cs BB s,Byc ’
s=RliJF =2, sp=sy| 1+ 12L0+2pC (1+ OLO j (1+ £,0)

where

P
24 tanh(j
2
Y P2=PCeCLS()Y0’ I+f 42 \2)
0 po p2 p3

34y KA?

b

the sum of the residues at s = *1s, is equal
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Case II1

i zaqowcosukt)[@(ck>§<ckx)+sz<ck)s<ckx)+2(5<ckx)—2>@(@)} )

Qk(mz—slf) (sinh {, cos{;, +cosh{; sin; )

Bﬁ B SkB()c]

1€
pC,L

e

-1

4 - 5
p p

2 12(1+se02 P j 36 tanh| £
+BBc1L[1+(SkBL—OCIJ J(1+2skt0)K_1A];2 @ (zj

s =0 is removable singularity, Residue=0. s =+ are simple poles and their residues are conjugates of each

other, so the sum of residues is twice the real part of residue of e* W(x,s)ats =10. The sum of residues at

s =11 is equal

P (LT

207 T°+U’
(5.23)
+c0s(wt)£T(Q+TS)_Z£P+R) +YB,
+

P= [(cosh(CRx) cos({,x) —cos (L gx)cosh(E;x))(sinh {  cos§; sin g cosh §; +
—cosh{,sin{; sinh{; cos )} —[(sinh(CRx)sin(Clx) +sin (L x)sinh (§,x))x

X(sinh g cos{; cos g sinh§; +cosh{,sing, sin{p coshC,)],

0= [(sinh(CRx)sin(Clx) +sin(gx)sinh (§,x))(sinh { g cos; sin{ p cosh{; +
—cosh{, sin{, sinh ; cos{y )] + [(cosh(CRx) cos(g,;x)— cos(CRx)cosh(CIx))x

X(sinh{z cos{; cosCpsinh{; +cosh{gsin{,; sinlp coshCl)],

R=—[(sinh(CRx)cos(Clx)—sin(CRx)cosh(CIx))x((coshCR cosC, sin{gcosh, +
—sinh { sin{; cos{zsinh {; )+ (sinh {z cos§; cos{z cosh§; +

+cosh{psinl; sin{p sinhCI)}+[(cosh§R cosC; cos{psinh{; +

+sinh {zsin{; sin{ cosh{; —sinh {p cos; sin{p sinh §; +cosh {psin{; cos{ cosh {; ) x

X(cosh (§gx) sin(;x)—cos(L g x)sinh(C,x))],
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S:—[(cosh(cRx)sin(Clx)—cos(CR x)sinh (;x))((cosh{g cos; sin{ cosh{; +
—sinh { sin{; cos{sinh §; )+ (sinh {z cos§; cos{x cosh§; +
+cosh{psinl; sin{y sinhCl)]—l:(coshCR cos{; cos{psinh§; +

+sinh {zsin{; sin{ cosh{; —sinh {p cos{; sin{p sinh §; +coshpsin{; cos{ cosh ;) x

X(sinh (L x)cos(&x) —sin(C px)cosh (¢ x)) |,

T =cosh{ g cos{; cos g cosh{, +sinh g sin, sinpsing, +1,
U =—cosh{ g cos{, sin{ g sinh; +sinh (g sin{; cos{ g cosh{, ,
V = cosh(§gx)cos(§x) +cos(Eg x)cosh (§x) -2,

Y =sinh ({ gx)sin (¢, x) —sin ({ zx)sinh (¢, x) .

Singularities corresponding to Gj (C) =0 given by Eq.(5.14) are simple poles. Using equation (5.6),

d2cs BB s,Byc ’
S=itCi\/Fs:imk= Sk=S0(]+ 12L0+ZPC (H OLO j (pro)J

where

Ci 2 _ PCecLsyyy
5p = R A Ty S RS
" 234, KAZ peen p? P’

the sum of the residues at s = *is, is equal

4F,q,0c08(s.!) A3(Ck)C(Ckx)+B3(Ck)S(Ckx)+((_?(§kx)—2)G3(Ck) y

Qk( _Sk) (sinh§; cos§; —cosh{, sin{; )
2BBoBc1(1+SkBL"C’j<1+f(p))
pC,L

e

+ (5.24)

12£I+sec2(2
+BBC,L[1+( Siboc ’j ](1+2skt0)K‘1A,;2 y - 5 2 ,
P D

x| —2s, F, +Sk(61LC]J++

<
~
Na—
o
AN
&
=
=
I/
N
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6. Numerical results and graphical explanations

Consider a viscothermoelastic solid like magnesium with the physical specifications as given below:
10°J
Kg

C,=1.04x—"deg, «,=298°K, ¢, =€=0779x10"",

6. =25x107°,  B=2.68x10°, q,=2x10"".

The frequency ® is 0.1076Hz. Dimensions of the beam are taken as L =200um , b =35um and h=30um .
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Fig.1. Deflection(D) in CC Viscothermoelastic beam with length (x) at different times for the first and
second mode.
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Fig.2. Deflection(D) in SS Viscothermoelastic beam with length
second mode.

(x) at different times for the first and
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The non-dimensional value of relaxation time for CC, SS, CF beams are computed from relation

ty=s," . So the values are given as ¢, = 1.0322,2.34,6.5683 for the first mode and #, = 0.3744,0.585,1.0481

for the second mode for the CC, SS and CF beam, respectively. Non-dimensional deflection has been evaluated
using Egs (5.18)-(5.24).

Deflection (D)

a0t o

(1
(1
—e—
—a—
A4 H| =12
—a—12

5653

MO

5683

[ 2 O R e T T oy

m

1 L 1 1 1 1 1
0.3 0.4 0a 06 o7 0.a 04g 1
Length(x)

01

£
[N

Fig.3. Deflection (D) in CF viscothermoelastic beam with length (x) at different times for the first and second
mode.
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Fig.4. Deflection (D) in CC viscothermoelastic beam with time () at different lengths for the first mode.

Figures 1-3 represent the transition of deflection for a viscothermoelastic beam for different boundary
conditions (CC, SS, CF) under the effect of harmonic load with respect to the length (x) at different time (7)

for the first and second mode. From Figs 1-3 it has been observed that the magnitude of deflection increases with
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an increase of time except for a cantilever beam at #=217. Also from Figs 1-2 it can be observed that the
deflection curve is symmetrical about the middle point of the beam. Also, the deflections near the axial ends are
more forceful for a clamped beam in comparison to a simple supported beam.

¥=0.16
¥»=030

Deflection (D

1 | | 1 | i
0 20 40 G0 a0 100 120 140 160 180 200
Time (t)

Fig.5. Deflection(D) in SS viscothermoelastic beam with time () at different lengths for the first mode.
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Fig.6. Deflection(D) in CF viscothermoelastic beam with time () at different lengths for the first mode.

Figures 4-6 depict the transition of deflection for a viscothermoelastic beam for different boundary
conditions (CC, SS, CF) under the effect of harmonic load with respect to time (t) at various values of length
(x) for the first mode. From Figs 4-5, it can be seen that maxima of deflection occur at middle spot of the

beam. Whereas, with an increase in length, deflection also increases in the case of a cantilever beam (Fig.6).
On analysing the magnitude of maximum value of deflection, it is observed that Dy 2D = Dgg .
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7. Conclusion

The dynamic response of a homogeneous isotropic viscothermoelastic beam under the action of
harmonic loading has been studied. The Laplace transform technique has been used twice with respect to time
and space domain. It is infered that
e  With an increase in time, the deflecion also increases in the case of CC, SS, CF beams except for the CF

beam at relaxation time ¢t =21,
e the deflection curve is symmetrical about the middle spot of the beam for the CC and SS beam,
e maxima of deflection occur at the middle spot of the beam

Acknowledgments

This work is affiliated with the Department of Mathematics, School of Chemical Engineering and
Physical Sciences, Lovely Professional University, Phagwara, Punjab, INDIA, and is supported by Lovely
Professional University, Phagwara, Punjab, INDIA.

The authors are grateful for the valuable discussion of Dr. Deepak Grover on this research work.

Nomenclature

C

', —specific heat
K —thermal conductivity

ty — thermal relaxation time

8. — Kronecker’s delta function

i
€.¢; — viscoelastic relaxation times

€. — linear thermal expansion coefficient
A, u — Lames parameters
p — density of medium

c; — components of stress tensor
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