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An electrically conducted viscous incompressible nanofluid flow caused by the nonlinear stretching surface 
with stagnation flow has been investigated numerically. The effect of Brownian motion and thermophoresis on the 
nanofluid is also incorporated. The governing partial differential equations with nonlinear second order boundary 
conditions are solved by the fourth order Runge-Kutta technique using MATLAB programming. The effect of the 
radiation parameter (Rd), stretching parameter (n), Brownian motion parameter (Nb), thermophoresis parameter (Nt) 
on temperature, velocity and mass transfer are shown graphically. The influence of some of these parameters on 
the local Nusselt number (−𝜃′(0)) and local Sherwood number (−𝜙′(0)) are shown by the graphs. 
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1. Introduction 
 
 In recent years, the investigation of flow with nonlinear stretching surfaces and magneto-nanofluids 
has produced benefits due to its various mechanical applications. It is used in a lot of modern fields, such as 
polymer fibre creation, milling, metalworking, etc. The boundary layer and flow problems are turning into an 
extremely noticeable area of research and analysis.  
 Ahmed [1] worked on a Walter’s Model-B fluid in a boundary layer flow over a stretching plate. He solved 
the problem of heat transfer with variable thermal conductivity in two different parts: first, the prescribed surface 
temperature and second, the prescribed stretching plate heat flux. Ahmed [2] discussed the boundary layer flow of 
a viscous incompressible fluid over a stretching plate. He explained the effect of the suction parameter with variable 
thermal conductivity on the temperature field in two different parts: first, the prescribed surface temperature and 
second, the prescribed stretching plate heat flux. Anderson [3] studied the viscoelastic fluid flow across a transverse 
magnetic field on a stretching surface and obtained the exact analytic solution for the boundary layer. 
 Bentwhich [4] explored and found a solution to a two-dimensional problem with the help of an Oseen 
equation and Reynolds number. Bhargava et al.  [5] studied a micropolar flow over a nonlinear stretching 
sheet. Chen [6] discussed the laminar boundary layer flow on a stretching sheet with the consideration of two 
cases: first, the sheet with recommended wall temperature and second, with heat transfer on a continuous surface. 
Choi [7] was the first to use a nanofluid by adding nanoscale particles.  
 Cortell [8] examined a viscous fluid flow over a nonlinear stretching sheet by analysing two cases: CST 
and PST. Crane [9] was the first to solve two-dimensional Navier-Stokes equations. He examined the time-
independent, two-dimensional incompressible boundary layer flow of a Newtonian fluid on a stretching flat plate 
moving in its plane with variable direct velocity under the fixed point with uniform pressure.  
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 Fang [10] discussed the magnetohydrodynamic (MHD) flow over a linearly stretching surface in a porous 
medium with slip conditions. Hayat [11] discussed the magnetohydrodynamic (MHD) flow of Jeffrey liquid 
along with a nonlinear radially stretched sheet. Heat transfer is characterized by Newtonian and Joule heating 
effects. Hasio [12] investigated the nanofluid energy conversion problem with slip boundary conditions on 
stretching sheets and explained the application of the applied energy effect in the aspect of heat and mass transfer. 
 Kalidas [13] investigated the effect of a magnetohydrodynamic (MHD) mixed convection flow of 
stagnation-point over a nonlinear surface with slip velocity and controlled surface temperature. Kang et al. 
[14] carried out mathematical and exploratory examinations on the thermal conductivity of nanofluids. To 
improve the conductivity of thermal nanofluids, he used the volume of nanoparticles rather than the volume of 
the fluid. Khan and Pop [15] worked numerically on stretching surfaces in a nanofluid with laminar flow.  
 Nandeppanavar et al. [16] considered the second-order slip boundary condition and investigated the 
consequences of heat transfer effects with PST and PHF heating process. Nagendramma [17] examined a two-
dimensional triple-diffusive boundary layer slip parameter of a nanofluid over a nonlinear stretching surface 
immersed in a porous medium. The utilized model for the nanofluid consolidates the impacts of thermophoresis, 
Brownian motion, cross-dispersion, and the power-law extending boundary. Rosca et al. [18] investigated the 
boundary layer under the condition of zero velocity point flow and discussed the effect of second-order slip 
velocity over a nonlinear stretching/shrinking sheet.  
 Sakiadis [19] discussed the boundary layer behavior on continuous solid surfaces with arrangements of 
the surfaces differing significantly from those for boundary layer flow on surfaces of limited length. Seth [20] 
explored the stagnation point flow of nanofluids in the direction of a nonlinearly stretching sheet of variable 
thickness in the presence of an electromagnetic field and convective heating. The novel idea of non-radiative heat 
transfer is likewise considered. The nanofluid is propelled by the Lorentz force which arises from the attraction 
of electric and magnetic fields. Likewise, the effect of physical limits is considered and presented in graphs and 
tables. Shen [21] analyzed the time-independent boundary layer flow over an impermeable moving vertical flat 
plate with the convection boundary condition at the left half of the flat plate. He shows that a similar arrangement 
is possible if the convection boundary condition in heat transfer is connected with the heated or cooled liquid on 
the left half of the flat plate. Likewise, the effects of the boundary conditions on skin friction, heat transfer, divider 
temperature, and velocity and temperature profiles are investigated on the streamlines and isotherms.  
 Siddappa [22] explored Crane’s flow issue to the viscoelastic fluid of Walter's Model-B fluid. Subhas 
[23] discussed the viscoelastic fluid flow and heat transfer characteristics in a saturated porous medium. He 
considered PHF and PST cases and determined the velocity field and skin friction. Wang [23] extended Crane’s 
paper. He worked on the three-dimensional boundary flow on a flat stretching sheet and found the exact solution 
of the Navier-Stokes equation. 
 We aim to focus on the effect of the radiation parameter (Rd), stretching parameter (n), Brownian motion 
parameter (Nb), and thermophoresis parameter (Nt) in the presence of second-order velocity parameters on 
stagnation flow over a nonlinearly stretching sheet with mixed convection heat and mass transfer with electrical 
magnetohydrodynamics. 
 
2. Mathematically formulation 
 
 In this paper, we consider a steady, electrically conducting viscous incompressible, two-dimensional 
nano-fluid stagnation flow with second-order slip boundary conditions. The heat transfer with electric and 
magnetic effects under mixed convection is also considered. The stagnation flow is taken into account through 
an infinite vertical sheet. The stream of the fluid is heading along with the sheet, on which the x-direction is 
considered as tangent and the y-direction as normal. Therefore, the flow is stagnation flow. A schematic 
representation of the physical model and coordinates system is represented in Fig. 1. 
 The governing equations are 
 

  u v 0
x y

∂ ∂+ =
∂ ∂

, (2.1) 
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Fig.1. Physical model and coordinates system. 
 
The boundary-conditions are 
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          as  y → ∞ . (2.6) 

 
 Here, u (along the x-axis) and v (along the y-axis) are velocity components, ( mα ) is the thermal 
diffusivity, ( )υ  is the kinematic viscosity, ‘a’ is a positive constant, ( BD ) is the Brownian diffusion 
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coefficient, ( TD )  is the thermophoretic diffusion coefficient and the stress parameter 
( )
( )

p p

p f

c
c

ρ
τ =

ρ
 is the ratio 

between the effective heat capacity of the nanoparticle material and heat capacity of the fluid.  
 We are looking for similarity solution of Eqs (2.1)-(2.4) with boundary conditions (2.5)-(2.6). 
 

  ( )nu ax f= ′ η    and     ( ) ( ) ( ) 
n 1

2a n 1 n 1v x f f
2 n 1

− 
 
 

 ν + −  = − ⋅ η + η η   +
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 (2.7) 

 
To solve equations  
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We use equation (2.7) and (2.8) in Eqs (2.2)-(2.4). The following differential equations are obtained, 
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 is the Prandtl number, 
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The boundary conditions are 
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2.1. Nusselt number 
 
 The Nusselt number explains the difference of heat transfer through a liquid layer because of 
convection comparative with conduction over a similar fluid layer. The Nusselt number can be defined as 
 

  ( )
w

w

xqNu
k T T∞

=
−

. 

 
2.2. Sherwood number 
 
 The Sherwood number is utilized in mass transfer. Additionally, it is called a Nusselt number in mass 
transfer. It conveys the proportion of the convective mass exchange to the rate of diffusive mass transport. The 
Sherwood number can be defined as 
 

  ( )
m

B w

xqSh
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 at y 0=  is the wall heat, mq  is the 

mass flux, k  is the coefficient of thermal conductivity, x  is the characteristic length. 

 Let us introduce the following parameters: w
x
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 is known as the local Reynolds number. 
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x
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x

Sh 0
Re

= −φ  as the reduced Nusselt number and reduced Sherwood number, 

respectively. The local skin friction fC  can be defined as 
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 (2.14) 

 
Using Eqs (2.8), (2.12) and (2.13), we get 
 

  ( ) ( ) ( ) 
1
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n 1
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+
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3. Result and discussion 
 
 The changed momentum, temperature, and concentration Eqs (2.9)-(2.11) with boundary conditions 
(2.12) and (2.13) were numerically solved by utilizing the Runge-Kutta fourth order strategy alongside the 
shooting method. We acquired velocity, temperature profile graphs for various parameters.  
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Table 1. Comparison of - ( )θ 0′  and - ( )0′φ  for various values of parameters tN  and bN  when 

0 t c 1 1 1 2 dS G G K L R M E S 0= = = = = δ = δ = λ = = = = = , Sc Pr 10= =  and .n 1=  The result is 
validated with the results obtained by Khan and Pop [14]. 

 
tN  bN  - ( )θ 0′  

Khan and Pop 
- ( )0′φ  

Khan and Pop 
- ( )θ 0′  

Present Result 
- ( )0′φ  

Present Result
0.1 0.1 0.9524 2.1294 0.9524 2.1293 
0.2 0.2 0.3654 2.5152 0.3654 2.5151 
0.3 0.3 0.1355 2.6088 0.1355 2.6087 
0.4 0.4 0.0495 2.6038 0.0495 2.6037 
0.5 0.5 0.0179 2.5731 0.0179 2.5730 

 
 The mixed convection issue related to a time-independent, non-linear, two-dimensional stagnation 
point nanofluid flow over a stretching surface is also examined and numerical outcomes are obtained. The BLP 
defined is changed into an IVP by shooting strategy as the analytic strategies fail to understand the arrangement 
of different conditions together. The outcomes acquired are shown through the graphs for temperature, 
velocity, and concentration profile as well as the local Nusselt, and Sherwood number, respectively. To analyse 
the results, a numerical computation effort has been undertaken using the procedure characterized above. To 
study the outcomes, a numerical calculation has been done by utilizing the Runge Kutta fourth-order technique 
followed by a shooting strategy.  
 
Effect of magnetic field parameter  
 
 Figures 2 to 6 represent the effect of the magnetic parameter M on the non-dimensional velocity, 
temperature, concentration profile, local Nusselt, and Sherwood number.  
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Fig.2. Effect of different values of magnetic 
parameter M versus η  on ( )f ′ η  with 
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Fig.3. Effect of different values of magnetic 

parameter M versus η  on ( )θ η  with 
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On increasing the value of M and keeping the other parameters constant, the temperature, concentration, and 
Sherwood number are increasing while fluid velocity and Nusselt number are decreasing. On increasing M, 
the Lorentz force developed, which opposes the motion of the fluid, and therefore the momentum boundary 
layer reduces while the thermal boundary layer increases. Hence, velocity decreases (as shown in Fig.2) and 
temperature increases (as shown in Fig.3). We found that near the surface of the sheet, the concentration profile 
increases while at some distance from the wall the concentration profile decreases. 
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 η     tN  
  

Fig.4. Effect of different values of magnetic 
parameter M on ( )Φ η . 

  
Fig.5. Effect of different values of magnetic 

parameter M on ( )' 0−θ . 
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Fig.6. Effect of different values of magnetic parameter M on ( )' 0−Φ . 
 
Effect of radiation parameter 
 
 Figures 7 to 9 represent the effect of the radiation parameter Rd on the non-dimensional velocity, 
temperature, concentration profile. On increasing the value of Rd and keeping other parameters constant, the 
velocity and temperature profile increase while the concentration profile decreases. An increment in the 
radiation parameter means an increment in the external thermal energy which is the reason of an increment in 
temperature. The concentration of nanofluid increases near the plate and decreases away from the wall. 
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Fig.7. Effect of different values of radiation 
parameter dR  on ( )f ′ η .  

  
Fig.8. Effect of different values of radiation 

parameter dR  on ( )θ η .  
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Fig.9. Effect of different values of radiation parameter dR  on ( )Φ η . 
 

Effect of nonlinear parameter  
 
 Figures 10 to 14 represent the effect of the nonlinear parameter n on the non-dimensional velocity, 
temperature, concentration profile, local Nusselt, and Sherwood number. On increasing the value of n and 
keeping other parameters constant, the temperature and concentration profile decrease while the fluid velocity, 
Nusselt number, and Sherwood number increase.  
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Fig.10. Effect of different values of 
nonlinear parameter n  on ( )θ η .  

 
Fig.11. Effect of different values of nonlinear 

parameter n  on ( )f ′ η .  
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Fig.12. Effect of different values of nonlinear 
parameter n  versus η  on ( )f ′ η .  

 
Fig.13. Effect of different values of nonlinear 

parameter n  versus tN  on ( ).′−θ η  
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Fig.14. Effect of different values of nonlinear parameter n  on ( )0′−Φ . 
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Effect of second order velocity slip parameter 
 
 The impact of the second-order velocity slip parameter 2L  on the non-dimensional velocity, 
temperature, concentration profile, and local Nusselt and Sherwood number is illustrated in Figs 15-19. 
On increasing the value of 2L  and keeping other parameters constant, the momentum boundary layer increases 
while the thermal boundary layer decreases. Hence temperature, concentration, and Nusselt number decrease 
while the fluid velocity and Sherwood number increase.  
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Fig.15. Effect of different values of second 
order slip velocity parameter 2L  
on ( ).f ′ η  

 
Fig.16. Effect of different values of second 

order slip velocity parameter 2L  
on ( ).θ η  
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Fig.17. Effect of different values of second 
order slip velocity parameter 2L  
on ( )Φ η .  

 
Fig.18. Effect of different values of second 

order slip velocity parameter 2L  
on ( )0′−θ . 
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Fig.19. Effect of different values of second order slip velocity parameter 2L  on ( )0′−Φ . 
 
Effect of thermophoresis parameter and Brownian motion parameter 
  
 Figures 20 to 24 represent the effect of the thermophoresis parameter tN  and the Brownian motion 
parameter bN  simultaneously on the non-dimensional velocity, temperature, concentration, local Nusselt, and 
Sherwood number.  
 On increasing the value of  tN  and bN  and keeping other parameters constant, the thermal boundary 
layer decreases, and hence the temperature, concentration profile, Sherwood number decrease while the 
momentum boundary layer increases so the fluid velocity and Nusselt number increase. 
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Fig.20. Effect of different values of Brownian 
motion and thermophoresis 
parameter tN  and bN  on ( )f ′ η . 

  
Fig.21. Effect of different values of Brownian 

motion and thermophoresis 
parameter tN  and bN  on ( )θ η . 
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Fig.22. Effect of different values of Brownian 
motion and thermophoresis 
parameter tN  and bN  on ( )Φ η . 

  
Fig.23. Effect of different values of Brownian 

motion and thermophoresis parameter 
tN  and bN  versus η  on ( )0′−θ . 
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Fig.24. Effect of different values of Brownian motion and thermophoresis parameter tN  and bN  on ( ).0′−Φ  
 
Effect of stretching/shrinking parameter 
 
 Figures 25 to 29 represent the effect of the stretching parameter 0λ >  on the non-dimensional velocity, 
temperature, concentration profile, and local Nusselt and Sherwood number. On increasing the value of 0λ >  
and keeping other parameters constant, the thermal boundary layer and momentum boundary layer both 
decrease hence the temperature, concentration profile, Sherwood number, fluid momentum, and Nusselt 
number decrease.  
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Fig.25. Effect of different values of stretching 
parameter λ  on ( )f ′ η .  

  
Fig.26. Effect of different values of stretching 

parameter λ  on ( )θ η .  
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Fig.27. Effect of different values of 
stretching parameter λ  on ( )θ η . 

  
Fig.28. Effect of different values of stretching 

parameter λ  versus η  on ( )0′−θ .  
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Fig.29. Effect of different values of stretching parameter λ  on ( )0′−Φ . 
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Figures 30-31 present the effect of the stretching parameter 0λ <  on the temperature profile and Sherwood 
number and both profile increase. 
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Fig.30. Effect of different values of shrinking 
parameter 0λ <  on ( )θ η .  

  
Fig.31. Effect of different values of shrinking 

parameter 0λ <  versus η  on ( ).Φ η  
 
Effect of Prandtl number 
 
Figures 32 to 33 present effect of different values of Prandtl number ‘Pr’ versus η  on ( )f ′ η , (θ η ), ( )Φ η ,

with ,  . , . , . , . , . , . , .t b dn 2 N 0 1 N 0 1 Gt 0 1 Gc 0 1 R 0 1 Ec 0 1 E 0 1= = = = = = = = ,  . , . .20 1 L 0 1λ = =  
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Fig.32. Effect of different values of Prandtl 
number Pr  on ( )f ′ η .  

 
Fig.33. Effect of different values of Prandtl 

number Pr  on ( )Φ η .  
 
4. Conclusion 
 

1. On increasing the value of the magnetic parameter (M), the velocity and local Nusselt number decrease 
while the temperature, local Sherwood number, and concentration profile increase. The thermal 
boundary layer increases with Nt, Nb, and Rd. 



112  A study of MHD fluid with second order slip and thermal flow … 

2. The mass transfer of the nanofluid flow increases with the increment in the Prandtl number near the 
wall. 

3. The velocity and Sherwood number increase with the increment in the second-order velocity slip 
parameter. On the other hand, the temperature, concentration profile, and local Nusselt number all 
decrease. 

4. The velocity, temperature, local Nusselt, and Sherwood number of the fluid are found to decrease with 
the increment in the stretching parameter and the shrinking parameter, temperature profile decrease 
while the concentration profile increases. 

5. The nonlinear parameter n causes the fluid's non-dimensional velocity, local Nusselt number, and 
Sherwood number to increase, while the temperature and concentration profile decrease. 
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Nomenclature 
 
 ,  a c  – arbitrary constants 
 0B  – magnetic parameter applied along y axis on the flat heated surface 

 C  – concentration of fluid 
 BD  – Brownian diffusion coefficient 

  0

0

EE
U

=
β

 – non-dimensional electric-parameter 

 ( )f η  – dimensionless stream function  

  x t
t 2

AgG
a

β=  – non-dimensional thermal free. convection-parameter  

  x c
c 2

BgG
a

β=  – non-dimensional mass free convection-parameter 

  xg  – magnitude of the gravity 

  
2
0

f

BM
a

σ=
ρ

 – non-dimensional magnetic-parameter 

 bN  – Brownian motion parameter 

 tN  – thermophoresis parameter 

 Pr  – Prandtl number 
 Re  – Reynold’s number  

 T  – fluid-temperature 
 wT  – temperature at the stretching surface 

 U  – fluid velocity of free stream 
 ,  u v  – velocity in ,  x y  direction  
 wu  –  velocity of the stretching sheet 

 tβ  – thermal expansion coefficient 

  cβ  – mass-diffusion coefficient 

   σ  – electric conductivity which is consider to be constant 

  α  – thermal diffusivity  
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 fν  – kinematic viscosity of the fluid 

 fρ  – fluid density  

 pρ  – nanoparticle mass density 

 ( ) fcρ  – heat capacity of the fluid  

 ( ) pcρ  – effective heat capacity of the nanoparticle material 

 
( )
( )

  p

f

c
c

ρ
τ =

ρ
 – shear stress  

 0Q  – heat generation/absorption coefficient 
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