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This study numerically investigates the effects of thermal radiation on the flow over a black isothermal plate 
for an optically thin gray micropolar fluid. The flowing medium absorbs and emits radiation, but scattering is not 
included. The computational results are discussed graphically for several selected flow parameters. 
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1. Introduction 

 
 Micropolar fluids are fluids with a microstructure. They belong to a class of fluids with nonsymmetric 
stress tensor that which are called polar fluids, and include, as a special case, the well-established Navier-
Stokes model of classical fluids that we shall call ordinary fluids. Physically, micropolar fluids may represent 
fluids consisting of rigid, randomly oriented (or spherical) particles suspended in a viscous medium, where the 
deformation of fluid particles is ignored. The model of micropolar fluids was introduced in by Eringen [1]. 
Extensive reviews of the theory and application can be found in the articles by Ariman et al. [2-4] and the book 
by Lukaszewicz [5]. The potential importance of a micropolar boundary layer flow in industrial applications 
has motivated a number of previous studies, of which those of Chiam [6], Hassanien and Gorla [7, 8] and 
Hassanien [9] are of special interest.  
 On the other hand, at high temperature the effects of the thermal radiation in space technology are 
significant. Ishak [10] investigated the thermal boundary layer flow of a micropolar fluid over a stretching 
sheet a with thermal radiation effect. Rashidi and Pour [11] studied the flow a micropolar fluid through a 
porous medium in the presence of thermal radiation. Bhattacharyya et al. [12] described the effects of thermal 
radiation on a micropolar fluid flow and heat transfer over a porous shrinking sheet. Srinivas et al. [13] 
examined the unsteady flow of a micropolar fluid over a porous stretching sheet with thermal radiation and 
chemical reaction. Singh and Kumar [14] described the effects of thermal radiation on a mixed convection 
flow of a micropolar fluid from an unsteady stretching surface with viscous dissipation and heat 
generation/absorption.  
 Naveed et al. [15] studied a magnetohydrodynamic flow of a micropolar fluid due to a curved 
stretching sheet with thermal radiation effect. Das and Sarkar [16] explored the effect of melting on a 
magnetohydrodynamic micropolar fluid flow toward a shrinking sheet in the presence of thermal radiation. 
Arifuzzaman et al. [17] described the magnetohydrodynamic micropolar fluid flow in the presence of 
nanoparticles through porous plate. Atif et al. [18] studied the magnetohydrodynamic micropolar Carreau 
nanofluid flow in the presence of thermal radiation and induced magnetic field. Also, Atif et al. [19] analyzed 
the magnetohydrodynamic stratified bioconvective flow of a micropolar nanofluid due to gyrotactic 
microorganisms in the presence of thermal radiation. Reddy and Ferdows [20] investigated the species and 
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thermal radiation effects on a micropolar hydromagnetic dusty fluid flow across a paraboloid revolution. In all 
these studies, the micropolar fluid was assumed to be optically thick and used the Rosseland approximation 
for the thermal radiation. To the author knowledge a micropolar flow over a black isothermal plate in the 
presence of thermal radiation has not been studied . So, in this paper, we have studied the effects of thermal 
radiation on the flow over a black isothermal plate for an optically thin gray micropolar fluid. The flowing 
medium absorbs and emits radiation, but scattering is not included.  
 
2. Mathematical analysis 
 
 We consider a two-dimensional steady flow of a micropolar fluid over α black isothermal plate. The 
x -axis is along the plate and the y -axis is normal to the plate. The radiative heat flux at the x -direction is 
considered negligible in comparison to the y -direction. Under the above assumptions, the flow in the presence 
of thermal radiation is governed by the following equations [21, 22]: 
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The boundary conditions are 
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here ,u υ  are the components of the velocity parallel and perpendicular to the plate, Sμ +ν =
ρ

 is the apparent 

kinematic viscosity, μ  is the coefficient of dynamic viscosity, S  is the vortex viscosity, ρ  is the fluid density, 

σ  is the microrotation component, 1
Sk =
ρ

, 1k 0>  is the coupling constant, 1G  is the microrotation constant, 

T  is the fluid temperature, wT  is the temperature of the plate, T∞  is the fluid temperature at infinity where 

wT T∞ < , k  is the thermal conductivity, pc  is the specific heat at constant pressure, ,r yq  is the thermal 
radiative heat flux at the y -direction and 0U  is the free stream velocity.  
 For the case of an optically thin gray fluid the local radiation over a black isothermal plate is expressed 
by [22] 
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where a  is the absorption coefficient and *σ  is the Stefan-Boltzman constant. 
We put  

 
  4 4 4

r w2T T T∞= +   (2.7) 
 
where r wT T T∞ < <   
By using Eqs (2.6) and (2.7), Eq.(2.4) gives 
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 We assume that the temperature differences within the flow are sufficiently small such that 4T  may 
be expressed as a linear function of the temperature T . This is accomplished by expansion in a Taylor series 
about rT  and neglecting higher-order terms, thus 
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 Substituting (2.9) in equation (2.8) gives 
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We introduce the following transformations 
 

  ( ), , , ,0
0

U y u U x f
x y x

∂ψ ∂ψη = = υ = − ψ = ν η
ν ∂ ∂

 

   

  ( ) , , ,0 01
0 1

U UKU g K G G
x x

σ = η = =
ν ν ν

 (2.11) 

 

  
*

*, , ,
3

pr r r

w r w r 0

cT T T T 16a T xm P S
T T T T k kU

∞ ρν− − σ νθ = = = =
− −

 

 
where η  is a similarity variable, ψ  is the stream function, ( )f η  is the dimensionless stream function, K  is 
the coupling parameter, ( )g η  is the dimensionless microrotation component, G  is the dimensionless 
microrotation parameter, θ  is the dimensionless temperature, m  is the dimensionless temperature parameter, 
P  is the Prandtl number and *S  is the radiation parameter.  
 Clearly u , υ  satisfy the continuity equation (2.1) identically. Using Eq.(2.11) the Eqs (2.2), (2.3) and 
(2.10) become 
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Fig.1. Temperature profiles for different values of the radiation parameter *S . 
 

 
 

Fig.2. Temperature profiles for different values of the Prandtl number P. 
 

The corresponding boundary conditions are 
 
  ( ) ( ) ( ), , ( ) , ,f 0 0 f 0 0 g 0 1 0 1′ = = = θ =   
    (2.15) 
  ( ) ( ) ( ), ,f 1 g 0 m′ ∞ = ∞ = θ ∞ = . 
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 Equations (2.12)-(2.14), subject to the boundary conditions (2.15), constitute a nonlinear system of 
differential equations, which is solved numerically by using two boundary value problem. 
 Figure 1 shows the effect of the radiation parameter S∗  on the non-dimensional temperature θ  when 

.K 0 2= , G 2= , P 10= , .m 0 3= − . It is observed that the non-dimensional temperature decreases with the 
increase of the radiation parameter *.S  
 Figure 2 shows the effect of the Prandtl number P  on the non-dimensional temperature θ , when 

.K 0 2= , G 2= , *S 2= , .m 0 3= − . It is observed that the non-dimensional temperature decreases with the 
increase of the Prandtl number P .  
 
3. Conclusions 
 

In this paper, we have studied the effects of thermal radiation on the flow over a black isothermal plate for 
an optically thin gray micropolar fluid. The flowing medium absorbs and emits radiation, but scattering is not 
included.  

• An increase in the radiation parameter S∗  leads to a decrease of the temperature. 
• An increase in the Prandtl number P leads to a decrease of the temperature. 

 
Nomenclature 
 
 pc  − specific heat at constant pressure 

 ( )f η  − dimensionless stream function 

 ( )g η  − dimensionless microrotation component  

 G  − microrotation parameter 
 k  − thermal conductivity 

 K  − coupling parameter 
 1K  − coupling constant 

 m  − temperature parameter 

 P  − Prandtl number 
 ,r yq  − thermal radiative heat flux at y - direction 

 S  − vortex viscosity  

 *S  − radiation parameter 

 T  − fluid temperature 
 wT  − fluid temperature on the plate 

 T∞  − fluid temperature at infinity 

 u  – velocity parallel to the plate 
 υ  − velocity perpendicular to the plate 
 0U  − free stream velocity 

 x  − axis along of the plate 
 y  − axis normal to the plate 

 α  − absorption coefficient 
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 η  − similarity variable 

 θ  − dimensionless temperature 
 ν  − kinematic viscosity 
 ρ  − fluid density 

 σ  − microrotation component 

 *σ  − Stefan-Boltzmann constant 
 ψ  − stream function 
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