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In this paper, a two-dimensional steady flow of a viscous fluid due to a stretching sheet in the presence of a 
magnetic field is considered. We proposed two new numerical schemes based on the Haar wavelet coupled with a 
collocation approach and quasi-linearization process for solving the Falkner-Skan equation representing the 
governing problem. The important derived quantities representing the fluid velocity and wall shear stress for various 
values of flow parameters  M and  β are calculated. The proposed methods enable us to obtain the solutions even 
for negative β , nonlinear stretching parameter, and smaller values of the magnetic parameter ( )M 1<  which was 
missing in the earlier findings. Numerical and graphical results obtained show an excellent agreement with the 
available findings and demonstrate the efficiency and accuracy of the developed schemes. Another significant 
advantage of the present method is that it does not depends on small parameters and initial presumptions unlike in 
traditional semi-analytical and numerical methods. 
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1. Introduction  
 
 The knowledge of boundary-layer flow phenomena is an important prerequisite to many physical 
problems in manufacturing industries that include stretching of polymer and metal sheets. This is also 
experienced in several other practical applications such as the cooling and extrusion of plastic or metal 
sheets, paper production, glass and polymer industries, fibre processing, etc. More precisely, it is important 
that one must know the rate of cooling and the boundary-layer control of the stretching material in a moving 
or quiescent fluid to achieve the desired outcomes in such situations. Thus, a variable magnetic field is 
needful to regulate an electrically conducting cooling fluid and to control the cooling system. Evidently, the 
study of a magnetohydrodynamic (MHD) boundary-layer flow of a viscous fluid due to a stretching sheet is 
found to be very necessary and has received considerable interest among researchers in recent days. In fact, 
the effect of an MHD boundary-layer flow of a nanofluid associated with heat transfer, porous stretching 
medium, etc., has been addressed extensively in the literature due to its important impacts on the behaviours 
of the fluid flow [1-3].  

In practice, the governing physical problem is converted into an equivalent mathematical one, which 
is a third-order nonlinear ordinary differential equation known as the Falkner-Skan equation. This equation 
is the most celebrated equation and provides a considerable contribution to the development of boundary-
layer theory in fluid mechanics. Crane [4] presented a brief report on the two-dimensional boundary-layer 
flow caused by linear stretching and obtained the analytical solution. Followed by this, many researchers 
[5-7] studied the salient features of hydromagnetic flow and heat transfer over a stretching sheet. They 
obtained the closed-form solutions and eigen solutions at specific values of flow parameters. Chiam [8] 
analysed the problem of boundary-layer flow of a viscous fluid due to a stretching sheet with a power-law 
velocity distribution in the presence of a magnetic field. A brief literature survey on the flow past a stretching 
sheet can be found in Liao [9]. He obtained a dual solution for impermeable stretched surfaces using an 
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analytic technique, namely the homotopy analysis method. Recently, Kudenatti [10] investigated an MHD 
boundary-layer flow over a stretching boundary and found an analytical solution in terms of error and 
exponential function. Several researchers, namely Hayat et al. [11], Rashidi [12], Mehmood et al. [13] 
analysed the problem considered by [8] using semi-analytical methods such as the Adomian decomposition 
method, differential transform method, and homotopy analysis method, respectively. Due to the limitations 
of the domain of radius of convergence, semi-analytical methods diverge when the boundary-layer variable 
goes to infinity. To overcome this difficulty to a certain extent they used the above semi-analytical methods 
coupled with Padé approximants. However, these methods fail to converge the solution for quite smaller 
values of M  for specific negative β  values (where M  and β are respectively the magnetic parameter and 
the nonlinear stretching parameter which will be defined later). Therefore, the problem demands innovative 
new numerical methods for their analysis. Motivated by this fact, the wavelet methods have received a 
special attention of researchers. 

Wavelet methods are recognized as one of the most powerful and rapidly evolving methods for 
obtaining a numerical solution of ordinary and partial differential equations with growing applications in 
science and engineering. The advancement of the Haar wavelet method in the subject of numerical analysis 
started in 1997 when Chen and Hsiao [14] developed an operational matrix of integration to solve differential 
equation models of dynamic systems. They introduced the concept of expanding the function corresponding 
to highest derivative of differential equation into Haar series. Since then the solutions of differential/integral 
equations in a wavelet framework have grown. Following the pioneering work of Chen and Hsiao [14], Lepik 
[15-18] further modified and generalized the Haar wavelet method with a uniform grid for the solution of 
differential, integral, integro-differential and fractional integral equations. Consequently, several other 
researchers have been contributing substantially in the study of Haar wavelets [19-22]. In recent analyses, the 
Haar wavelet method in conjunction with quasilinearization approach has become quite popular in solving the 
nonlinear boundary value problems. Saeed and Rehman [23], Kaur et al. [24], Jiwari [25], successfully applied 
the Haar wavelet along with the quasilinearization technique to confront the nonlinear aspects of physical 
problems. However, in most of the above works, the researchers considered only the problem with finite 
domain. As a vital part of this work, we attempt to extend this method to examine the results for higher order 
nonlinear boundary value problems with semi-infinite or infinite domain and thus making the method more 
useful in real-world applications.  

 In the present study, a novel numerical method based on the Haar wavelet has been developed and 
successfully applied to a strongly nonlinear boundary value problem with semi-infinite domain representing 
the two-dimensional MHD steady flow of a viscous fluid due to a stretching sheet. Towards this goal, we 
proposed two numerical schemes based on Haar wavelet approximations: the Haar wavelet collocation method 
(HWCM) and Haar wavelet quasilinearization method (HWQLM). These methods are notable for the 
following benefits: 

– The method provides a simple solution procedure due to inherent features such as orthonormalization, 
compact support, simple explicit expression, and the hierarchy of solution approximation.  

– The simplicity, sparsity of Haar wavelet matrices, and also the solution representation with 
significantly a smaller number of wavelet coefficients increase the speed of convergence of the 
method.  

– Unlike semi-analytical methods, the proposed method avoids the restriction of existence of small 
perturbation parameters and also does not require the initial assumption of base function. 

– It does not demand the initial guesses for the solution at each and every case corresponding to values 
of parameters under study, unlike in traditional numerical methods. 

– The method is very convenient for solving boundary value problems since the boundary conditions are 
taken care of automatically and also, it is very effective for treating singularities (since they can be 
interpreted as intermediate boundary conditions). 

– The method works well even for problems with semi-infinite or infinite domains. 
– It promotes the possibility of the implementation of fast algorithms with minimal calculations. 

This paper is structured as follows: Section 2 is devoted to a brief review of Haar wavelets. The 
mathematical formulation of the problem is described in Section 3. In Section 4, we develop the solution 
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procedure based on HWCM and HWQLM. Section 5 is mainly concerned with the discussion of the obtained 
results followed by concluding remarks in Section 6.  

 
2. Haar wavelets 
 
 Haar wavelets have received most attention among wavelet families due to their beneficial features such 
as orthonormalization, symmetric, compact support and simple explicit expression for scaling and wavelet 
functions. They were first introduced by Alfred Haar in 1910, as pairs of piecewise constant functions. The Haar 
basis provides a very efficient representation of functions that consist of smooth, slowly varying segments 
punctuated by sharp peaks and discontinuities. The Haar wavelet family for [ , )x 0 1∈  is defined as [26] 
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The integration of the Haar functions ( )ih x  can be evaluated as 
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Similarly 
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For convenience of computations, the matrix form is introduced: ( ) ( ), i lH i l h x= , ( ) ( ),, i lP i l p xαα = , 

, ,1 2α = … , which are of order J 1 J 12 2+ +× . The sparsity pattern of the Haar matrix H  and its first integral 
P1  are shown in Fig.1. for J 5=  and J 6= , respectively. We notice that as the size of the matrices increases 
(i.e., J  increases), the sparsity of the matrices also increases. This ‘non-dense’ property of Haar matrices and 
inverse matrices makes the Haar wavelet transform faster when compared with other transforms and also more 
convenient for computer implementations. Any function ( ) [ ),2y x L 0 1∈ can be expanded in a Haar series with 
an infinite number of terms as 
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finite terms if ( )y x  is a piecewise constant or may be approximated as piecewise constants. 
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Fig.1. Nonzero structure of Haar matrix H and its first integral P1 . 

 
3. Formulation of the problem 
 
 The two-dimensional boundary-layer equations for the steady flow of an electrically conducting, 
viscous incompressible fluid in the presence of a magnetic field ( )B x  normal to the stretching sheet are: 
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subject to the boundary conditions 
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where u  and v  are the flow velocities in the x  and y  directions, respectively, ν , ρ  and σ  are respectively, 
the kinematic viscosity, the fluid density and the electrical conductivity. The induced magnetic field, the 
external electric field and the electric field due to polarization of charges are presumed to be negligible. 

It was proved that the similarity solutions exist when the non-uniform velocity of the stretching sheet 
is proportional to a power of the length coordinate, x , i.e., ( ) nU x ax=  and the magnetic field 

( ) ( )/n 1 2
0B x B x −= , where a , 0B  and n  are parameters related to the surface stretching speed [8]. 

Introduce the similarity variables: 
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where ( )f η  is a non-dimensional function related to the stream function ( ),x yψ  which is defined as  
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and η  is the non-dimensional variable. The horizontal and vertical velocity components are respectively: 
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By using the above transformations in Eqs (3.1)-(3.3), we obtain the third-order ordinary differential equation:  
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The system of Eqs (3.6)-(3.7) has exact analytic solutions for some special cases of β  [5, 27] 
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4. Method of solution 

 
The semi-infinite physical domain of the problem Eq.(3.6) is truncated to finite domain by introducing 

an unknown finite boundary ∞η  and normalized by introducing coordinate transformation / ∞ξ = η η , so that 
all the boundary conditions of Eq.(3.6) are satisfied. Under this transformation Eq.(3.6) takes the form: 
 
  ( )'''( ) ( ) ''( ) '( ) '( )22 2 2f f f f M f 0∞ ∞ ∞ξ + η ξ ξ − βη ξ − η ξ =    (4.1) 
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where ∞η  is a sufficiently large value, which varies with flow parameters β , M  and is to be determined as a 
part of the solution procedure such that the third boundary condition in Eq.(3.7), '( )f 0∞η =  and the 
asymptotic condition, ''( )f 0∞η =  are satisfied. The corresponding boundary conditions Eq.(3.7) are 
 
  ( ) , '( ) , '( ) .f 0 0 f 0 1 f 1 0= = =   (4.2) 
 
4.1. Numerical solution by HWCM 
 

The explicit analytical expression of Haar wavelets makes it possible to integrate Eq.(4.1) analytically 
an arbitrary number of times. With this observation, we seek the expressions for derivative functions ( )'''f ξ  
in Eq.(4.1) in terms of Haar series as follows:  
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Using the boundary conditions Eq.(4.2) and integrating Eq.(4.3), we obtain the lower order derivatives: 
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1
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C p t dt=   Substituting Eqs (4.3)-(4.6) in Eq.(4.1), we effectively transformed a two-point 

boundary value problem into a system of J 12 +  nonlinear equations in J 12 +  unknowns ia : 
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collocation method to reduce this system into discrete form by introducing the collocation points 
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The nonlinear system Eq.(4.7) is solved by Newton's method for unknown coefficients ia  and is given by 
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The above equations are solved recursively using MATLAB. To initiate the procedure, we considered a non-
trivial solution for initial resolution level J , which is then corrected by Newton's iterations. The wavelet 
coefficients for the next resolution level J 1+  are evaluated as  
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These approximations are corrected by Newton's method. The assumption Eq.(4.12) is based on the fact that 
higher coefficients of the sequence ia  are relatively small. This assumption was totally justified in Section 5 
(see, Figs 3a and 3b). The wall shear stress is evaluated by the explicit relation  
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The results obtained for various flow parameters are shown in Tabs 3-5. 
 
4.2. Numerical solution by HWQLM 
 

In this method, we used the quasilinearization approach, introduced by Bellman and Kalaba [28], to 
linearize the problem Eq.(4.1): 
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which reduces to  
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with corresponding boundary conditions 
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This method has a quadratic convergence. Applying the Haar wavelet method to Eq.(4.15) as explained in 
Section 4.1, we obtain the following system of J 12 +  linear equations: 
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With a suitable initial approximation, the system Eq.(4.17) is solved for Haar coefficients ia . MATLAB 
program is developed to find the wavelet solution of the problem at various levels of resolution. 
 
4.3. Error analysis 
 

The convergence and efficiency of the Haar wavelet method have been studied by Majak et al. [29] 
and they proved that for the Haar wavelet approximation, the error is proportional to the reciprocal of the level 
of resolution. In our study, we estimate the exactness of the obtained wavelet results by estimating L∞  errors 
as follows: 
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For the case of β  where exact solutions are not known, we compute the solution error using the relation 
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( )Jf η  is the solution of Eq.(3.6) for the level of resolution J . The convergence rate of the solution of Eq.(3.6) 

is computed by the ratio given below 
 

  ; , ,J 1
J

J
J 2 3−Δ

σ = = …
Δ

  (4.21) 

The L∞  errors and the rate of convergence at various resolution levels for , , .1 1 1 5β = − & 5 are computed and 
presented in Tabs 1-2 and Fig. 2.  
 
5. Results and discussion 
 

The problem of an MHD boundary-layer flow due to a stretching sheet is studied using novel wavelet 
based numerical schemes. The motion of the fluid is governed by nonlinear ODE Eq.(3.6) with boundary 
conditions Eq.(3.7). The governing problem Eq.(3.6) is solved using HWCM by normalizing the semi-infinite 
domain with suitable coordinate transformation. The expressions for velocity profiles and the shear stress are 
given by the relations Eq.(4.5) and Eq.(4.13), respectively. Numerical computations are performed for different 
values of physical parameters M  and β  at various resolution levels.  
 
Table 1. Error estimates of solution of Eq.(3.6) using HWCM for ,1 1β = −  at different resolution levels. 
 

J  Jδ  for 1β = −  
( M 0= ) 

Jδ  for 1β =  
M 5= M 10=  

1 1.343078E-01 7.941058E-02 5.761444E-02 
2 1.706404E-01 2.745206E-02 1.729623E-02 
3 2.011636E-02 9.469628E-03 6.202398E-03 
4 4.613047E-03 2.620338E-03 1.724250E-03 
5 1.127123E-03 6.734131E-04 4.433600E-04 
6 2.798058E-04 1.695584E-04 1.116489E-04 
7 6.909750E-05 4.247781E-05 2.797759E-05 
8 1.651685E-05 1.063719E-05 7.013003E-06 
9 5.731338E-06 2.672670E-06 1.768994E-06 
10 1.483911E-06 6.812946E-07 4.578467E-07 
 

 To confirm the accuracy and validity of the results obtained, the problem is also analysed by HWQLM. 
The physical dynamics of the problem is analysed through the velocity profiles and shear stress for different 
parameters. In the absence of an applied magnetic field, i.e., M 0=  and general β  the problem Eq.(3.6) 
reduces to the study of a two-dimensional laminar flow due to a stretching wall [10, 30, 31]. Also, for 0β =  
the governing problem describes the well-known Sakiadis problem [32]. We have estimated L∞  errors for 

1β = −  and 1β = values using the relation Eq.(4.18) and they are given in Tab.1. It is evident from the table 
that the error decreases as the level of resolution increases. We also computed solution errors and rate of 
convergence for .1 5β =  and 5β =  where the analytical solutions are not available. The results obtained are 
given in Tab.2. and Fig.2. at different levels of resolution. The nature of the errors obtained in these cases is 
similar to the previous one (cf. see Tab.1.). Clearly, the error bound for Haar wavelet approximation is 
inversely proportional to the resolution level. Also, it is observed from Tab.2. that by doubling the number of 
collocation points the error roughly decreases four times as J  increases, i.e., the rate of convergence for the 
Haar wavelet series is  
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2

J 1
1O

2 +

    
   

. 

 
This numerical estimation of Jσ  ultimately demonstrates the convergence and stability of the proposed 
method. A similar trend is noticed for HWQLM results also, but not included here. 
 
Table 2. Error estimates and rate of convergence of solution of Eq.(3.6) using HWCM for .1 5β =  at different 

resolution levels. 
 

J  M 5=   M 10=  

JΔ  Jσ  JΔ  Jσ  

1 4.106421E-02 -  5.857679E-02 - 
2 2.659896E-02 1.54383  2.082747E-02 2.81248 
3 1.396369E-02 1.90487  1.187476E-02 1.75393 
4 4.267115E-03 3.27240  3.613376E-03 3.28633 
5 1.125336E-03 3.79186  9.498328E-04 3.80422 
6 2.851973E-04 3.94581  2.404813E-04 3.94972 
7 7.154423E-05 3.98631  6.031122E-05 3.98734 
8 1.790142E-05 3.99657  1.508977E-05 3.99683 
9 4.476315E-06 3.99914  3.773190E-06 3.99921 

 

 
 

Fig.2. Error estimates in the solution of Eq.(3.6) using HWCM for 5β = . 
 

From Figs 3a and 3b, it is interesting to note that, the wavelet coefficients are in direct relation with 
level of resolution. That is, for increase in J , the number of coefficients ia  also increases by J 12 + . By 
increasing the wavelet number i , the wavelet coefficients ia  rapidly decreases with higher coefficients values 
attains to zero and also, the values of ia  are significantly smaller, which eventually provides high accuracy 
solutions (i.e., high rate of convergence) with finite number of Haar coefficients. Figure 4 describes the wavelet 
solution ( )f η  at different iterations so as to corroborate the speed of convergence of HWQLM. It can be seen 
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from the graph that the first few iterations of HWQLM itself provide very accurate and numerically stable 
answers. 
 

 
Fig.3a. Values of Haar wavelet coefficients for solution of Eq.(3.6) for 1β =  at resolution levels J 2= and 3 . 

 

 
 

Fig.3b. Values of Haar wavelet coefficients for solution of Eq.(3.6) for 1β =  at resolution levels J 4= and 5 . 
 

The influence of the magnetic parameter M  and β  on the wall shear stress ( )f 0′′  is presented in Tabs 
3-5 (cf. Eq.(4.13)). The results are in close agreement for all the solutions obtained and giving better accuracy 
for a higher resolution level. The computational time efficiency of the proposed methods has been explicitly 
calculated by employing timing command and shown in Tab.6. for specific values of flow parameters. Intel 
Core i3 processor with 4GB RAM is used for the calculation. It must be emphasized that the amount of 
computational effort is significantly less in the repeated methods. The comparison of solution ( )f η  obtained 
by HWCM and HWQLM with exact solution is shown in Fig.5a. It is important to note that unlike the shooting 
method reported in [8], the wavelet method does not require initial guess for ( )f 0′′  at each and every case 
corresponding to parameters β  and M . The assumption taken in Eq.(4.12) by itself works well for all the 
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considered cases of β  and M , which enhances the effectiveness of the proposed methods. The velocity 
profiles for various values of the magnetic parameter M  and 1β =  using HWQLM and HWCM are plotted 
in Fig.5b. It is observed that the boundary-layer becomes thinner when the magnetic parameter M  increases 
and this causes an increase in the shear stress (in absolute sense). Also, the domain of the problem becomes 
smaller and smaller. 
 

 
Fig.4. Comparison of analytical solution and HWQLM solution for different iterations (resolution level 

J 6=  and M 1= β = ). 
 
Table 3. Comparison of values of the skin friction coefficient ( )f 0′′  for 1β =  and various values of the 

magnetic parameter M . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
M  

1β =  
HWQLM  HWCM Exact 

solution [5] 
J 9=  J 10= J 9= J 10=  

0 -1.00000 -1.00000  -1.00000 -1.00000 -1.00000 

1 -1.41421 -1.41421  -1.41421 -1.41421 -1.41421 

5 -2.44949 -2.44948  -2.44949 -2.44948 -2.44948 

10 -3.31662 -3.31662  -3.31662 -3.31662 -3.31662 

50 -7.14142 -7.14142  -7.14142 -7.14142 -7.14142 

100 -10.04987 -10.04987  -10.04987 -10.04987 -10.04987 

500 -22.38303 -22.38302  -22.38303 -22.38302 -22.38302 

1000 -31.63858 -31.63858  -31.63858 -31.63858 -31.63858 

1500 -38.74274 -38.74274  -38.74274 -38.74274 -38.74274 

2000 -44.73253 -44.73253  -44.73253 -44.73253 -44.73253 

↓        
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Table 4. Comparison of values of the skin friction coefficient ( )f 0′′  for . , .1 0 1 5β = − −  and different values of 
the magnetic parameter M  (Resolution level J 9= ). 

 
β  M  HWQLM HWCM Shooting 

method [8] 
Crocco 
transformation 
method [8] 

ADM [11] 

-1.0 0 0.0 0.0 0.0 -0.31345 0.0 
 0.1 -0.13215 -0.13215 -0.13215 -0.18116 - 
 0.2 -0.24783 -0.24783 -0.24783 -0.19294 - 
 0.3 -0.35006 -0.35006 -0.35006 -0.33459 - 
 0.4 -0.44140 -0.44140 -0.44140 -0.43711 - 
 0.5 -0.52395 -0.52395 -0.52395 -0.52349 - 
 1 -0.85111 -0.85111 -0.85111 -0.85210 -0.8511 
 5 -2.16287 -2.16287 -2.16287 -2.16289 -2.1628 
 10 -3.11003 -3.11003 -3.11003 -3.11003 -3.1100 
 50 -7.04756 -7.04756 - - -7.0475 
 100 -9.98335 -9.98335 -9.98335 -9.98335 -9.9833 
 500 -22.35326 -22.35326 - - -22.3532 
 1000 -31.61754 -31.61754 - - -31.6175 
 1500 -38.72558 -38.72558 - - - 
 2000 -44.71768 -44.71768 - - - 
       

-1.5 0 0.72725 0.72725 0.72725 0.55680 Solution 
diverges 

 0.1 0.45107 0.45107 0.45107 0.50285 - 
 0.2 0.23038 0.23038 0.23038 0.43877 - 
 0.3 0.05203 0.05203 0.05203 0.35849 - 
 0.4 -0.09506 -0.09506 -0.09506 -0.24592 - 
 0.5 -0.21922 -0.21922 -0.21922 -0.10844 - 
 1 -0.65298 -0.65298 -0.65298 -0.65325 -0.6532 
 5 -2.08524 -2.08524 -2.08524 -2.08528 -2.0852 
 10 -3.05623 -3.05623 -3.05623 -3.05623 -3.0562 
 50 -7.02387 -7.02387 - - -7.0238 
 100 -9.96665 -9.96665 -9.96665 -9.96665 -9.9666 
 500 -22.34579 -22.34579 - - -22.3457 
 1000 -31.61227 -31.61227 - - -31.6122 
 1500 -38.72127 -38.72127 - - - 
 2000 -44.71396 -44.71396 - - - 

↓        
 

Figures 6a and 7a present a comparison between the HWQLM and the HWCM solutions ( )f η  at 
. , .1 5 1 5β = − . The variations of ( )f ′ η  with η  approximated by the proposed methods are depicted in Figs 6b 

and 7b. Table 4 shows that Adomian decomposition method fails to give converging values for ''( )f 0  at 
.1 5β = −  and M  about 1, which is clearly highlighted in the earlier findings [11]. A significant change in the 

nature of the flow occurs at .M 0 5≤ and for a negative nonlinear stretching parameter β . This can be observed 
from Fig.7b. that for the values of .M 0 5≤ , ( )f ′ η  behaves differently near the surface. That is, ( )f ′ η  attains 
a maximum before it starts to decrease. The methods described in [11, 12] fail to model this behaviour properly. 
However, our proposed wavelet methods persists to produce the desired solution regardless of whether the 
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magnetic parameter M is smaller or larger without any convergence issues. Also, the results obtained by these 
methods are more accurate and giving converging solutions than the homotopy analysis method [33]. The 
variations of velocity and shear stress profiles for different values of M  and . , . , .1 5 1 0 5 0β = − −  are plotted in 
Figs 8-10. An interesting variation behaviour in shear stress profiles is found in Figs 8, 9b for 0β <  and smaller 
values of M  wherein ( )''f η  decreases before satisfying the asymptotic condition ( )''f 0∞η = . 
 
Table 5. Comparison of values of the skin friction coefficient ( )f 0′′  for . ,1 5 5β =  and different values of the 

magnetic parameter M  (Resolution level J 9= ). 
 

β  M  HWQLM HWCM Shooting 
method [8] 

Crocco 
transformation 
method [8] 

ADM [11] 

1.5 0 -1.14860 -1.14860 -1.14860 -1.14902 -1.1547 
 1 -1.52527 -1.52527 -1.52527 -1.52533 -1.5252 
 5 -2.51615 -2.51615 -2.51615 -2.51616 -2.5161 
 10 -3.36631 -3.36631 -3.36631 -3.36632 -3.3663 
 50 -7.16471 -7.16471 -7.16471 -7.16471 -7.1647 
 100 -10.06645 -10.06645 -10.0664 -10.0664 -10.0776 
 500 -22.39049 -22.39049 - - -22.3904 
 1000 -31.64388 -31.64388 - - -31.6438 
 1500 -38.74708 -38.74708 - - - 
 2000 -44.73631 -44.73631 - - - 
       
5.0 0 -1.90253 -1.90253 -1.90253 -1.90433 -1.9098 
 1 -2.15290 -2.15290 -2.15290 -2.15344 -2.1528 
 5 -2.94144 -2.94144 -2.94144 -2.94150 -2.9414 
 10 -3.69566 -3.69566 -3.69566 -3.69567 -3.6956 
 50 -7.32561 -7.32561 -7.32561 -7.32561 -7.3256 
 100 -10.18167 -10.18167 -10.1816 -10.1816 -10.1816 
 500 -22.44255 -22.44255 - - -22.4425 
 1000 -31.68074 -31.68074 - - -31.6806 
 1500 -38.77718 -38.77718 - - - 
 2000 -44.76238 -44.76238 - - - 
↓        

 
Table 6. The CPU time taken to obtain the wavelet solution of Eq.(3.6) for 1β =  and M 5= .  
 

Resolution level 
J  

No. of collocation 
points 

Time in Seconds 
HWCM HWQLM 

(4 iterations) 
4 32 0.21 0.09 
5 64 0.25 0.13 
6 128 0.38 0.18 
7 256 0.59 0.32 
8 512 1.04 0.55 
9 1024 5.95 4.09 
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Fig.5. Comparison of (a) solution ( )f η  and (b) velocity ( )f ′ η  of Eq.(3.6) obtained by HWCM and 
HWQLM with the analytical solution for 1β = . 

 

 

Fig.6. Comparison of (a) solution ( )f η  and (b) velocity ( )f ′ η  of Eq.(3.6) obtained by HWCM and 
HWQLM with the analytical solution for .1 5β = . 

 

 

Fig.7. Comparison of (a) solution ( )f η  and (b) velocity ( )f ′ η  of Eq.(3.6) obtained by HWCM and 
HWQLM with the analytical solution for 1.5β = − . 
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Fig.8. Shear stress profiles in the boundary-layers under different values of M  and .1 5β = − . 
 

 
Fig.9. Velocity and shear stress profiles in the boundary-layers under different values of M  and .1 0β = − . 

 

 
 

Fig.10. Velocity and shear stress profiles in the boundary-layers under different values of M  and .5 0β = . 
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6. Conclusion 
 
 We presented Haar wavelet based numerical schemes to investigate an MHD boundary-layer flow due 
to a nonlinear stretching sheet. The flow is governed by the Falkner-Skan family of equations. The advantage 
of the proposed methods over semi-analytical and numerical methods is that they work effectively for all values 
of β  and M  without encountering any difficulty. The results obtained in this paper confirm that these methods 
prove to be a competitive alternative to existing semi-analytical and traditional numerical methods. The 
methods guarantee the convergence of the solution and it can be easily employed to many nonlinear boundary 
value problems with semi-infinite or infinite domains arising in fluid mechanics. 
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Nomenclature 
 
 i  – wavelet number  
 j  – dilation parameter 
 k  – translation parameter 
 J  – resolution level 
 H  – Haar matrix 
 Pα  – Haar integral matrices 
 ia  – Haar coefficients, dimensionless 

 ,x y  – coordinates of Cartesian system of axes, m 
 ,u v  – flow velocities in the x  and y  directions respectively, /m s   
 , , ν ρ σ  – kinematic viscosity ( )/m2 s , the fluid density ( )/kg m3  and electrical conductivity ( )/ ,S m  respectively 

 ( )U x  – non-uniform velocity of the stretching sheet, m/s 

 ( )B x  – magnetic field, T 

 β  – nonlinear stretching parameter, dimensionless 
 M  – magnetic parameter  

 ψ  – stream function, /2m s   
 η  – non-dimensional variable 
 ( )f η  – non-dimensional function related to the stream function 

 ( )''f 0  – wall shear stress 

 Jδ  – L∞  error 

 ΔJ  – solution error 

 Jσ  – rate of convergence 
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