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In this work, we discuss a fractional model of a flow equation in a simple pipeline. Pipeline narrowing is a 
crucial aspect in drinking water distribution processes, sewage system and in oil-well schemes. The solution of 
the mathematical model is determined with the aid of the Sumudu transform and finite Hankel transform. The 
results derived in the current study are in compact and graceful forms in terms of the Mittag-Leffler type 
function, which are convenient for numerical and theoretical evaluation.  
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1. Introduction 
 
 Fluid mechanics investigates fluid motion that contains forces of action and reaction, i.e., forces 
which cause acceleration and forces which resist acceleration. For all flows, we suppose that the pipe is 
entirely filled with the fluid being transported. So, we do not take a concrete pipe through which rainwater 
flows without entirely filling the pipe; these kinds of flows are known as open-channel flows. The difference 
between the pipe flow and an open-channel flow is in the fundamental component that affects the flow. In 
open-channel flows, gravity is only the driving force, i.e., the water flows downwards. In pipe flows, gravity 
may be crucial as the pipe is not necessarily be horizontal, but the key driving force is generally to be a 
pressure gradient through the pipe. If the flow is not fully developed in the pipe, than the pressure difference 
is not possible to be maintained. 
 For an incompressible flow, the continuity and Navier-Stokes equations (NSEs) are [1] 
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 Equation (1.2) can be reduced to cylindrical coordinates ,θ andr z  directions below as 
 

  
( )

,

2

2 2

2 2 2 2

U U V U U V
U W

t r r z r

1 p 1 rU 1 U U 2 V

r r r r r z r

   
    

   
                        

 (1.3) 

 

  
( )

,
2 2

2 2 2 2

V V V V V UV
U W

t r r z r

1 1 p 1 rV 1 V V 2 U

r r r r r z r

   
    

   
                        

  (1.4) 

 

  .
2 2

2 2 2

W W V W W 1 p 1 W 1 W W
U W r

t r r z z r r r r z

                                 
  (1.5) 

 
 The NSEs are helpful because they interpret the process of several aspects of academic and monetary 
significance. They are utilized to model the weather, fluid flow in a pipe and air flow about a wing. The 
NSEs in their wide and simplest forms assists with the study of fluid flow. A number of researchers have 
also investigated fluid flow by using different mathematical resources [2-10]. In this work, we developed a 
fractional model for the study of fluid flow in narrowing system by using Eq.(1.2) with the help of equation 
of continuity and applying the Sumudu and Hankel transforms, which generate the solution for the time 
fractional NSE in a circular cylinder. The notable and crucial advantage of utilization of fractional 
derivatives in mathematical modeling is their non-local nature. It is established fact that the integer order 
differential operator is a local operator but the differential operator of fractional order is non-local. This 
implies that the next state of a dynamical process depends not only upon its current state but also upon all of 
its past states. Consequently the fractional modeling is more reliable and effective it is one reason why a 
fractional order models have gained more and more popularity in science and technology [11-27].   
 The key aim of this work is development of a solution of a fractional model of a flow equation in a 
simple pipeline. The Sumudu transform and finite Hankel transform are utilized to achieve the solution of the 
fractional problem. The results are derived in compact and graceful forms in terms of the extended Mittag-
Leffler (ML) function, which are highly systematic and effective for numerical simulation.  
 
2. Preliminary results 
 
 The Sumudu transform (ST) of a function   ,f t  determined for all real numbers t 0 , is the 

function ( ),sF u  defined by [28-31] 
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 We utilize the following results [32, 33] as 
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where  k  is the parameter symbol and is defined as 
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 The zero order Bessel function ( )0J x  [34] is defined as 
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 The zero order finite Hankel transform [35] is defined as 
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where n  are the roots of the equation  o nJ R 0  . 

 We also use the below result  
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 An extension of the ML function [36, 37] 
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was given in [38] in the general form  
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also derived in [39] in the subsequent integral  
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 The 3 parameter ML function was defined by Prabhakar [40] and a detailed study was conducted by 
Garra and Garrappa [41]. The function is expressed as follows 
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 The fractional derivative of order 0   is suggsted by Caputo [11] in the form  
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where 
( )m

m

d f t

dt
 is the thm  derivative of order m of the function ( )f t  with respect to t. The Sumudu 

transform of the above derivative of arbitrary order is presented in [42]  
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 An extension of the Caputo fractional operator Eq.(2.10) is suggested in [43], by using a right-sided 
fractional operator of 2 parameters of order and0 1 0 1        
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If we set 1  , Eq.(2.12) yields the Caputo fractional operator (2.10).  
 The ST of the extended fractional derivative [43, 44] is presented as 
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where the initial value term 
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contains the Riemann-Liouville (RL) fractional integral operator of order   1 1    evaluated in the 

limit as x 0  . In any one want to see detailed results of this operator refer the work in [44]. 
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3. Formulation of problem  
 
 We consider a long circular cylinder in which the fluid is at rest initial position and a fixed pressure 
gradient fluid is set into motion (constant   and  ) is inflicted along the axis of cylinder. Assume   be the 

direction of the axis of the cylinder along which the fluid flows and suppose the r be the radial direction 
departing from the  -axis, due to the fluid flow is produced and symmetric about the axis. Here, we 
consider that on the wall of the cylinder there are some deposition of thickness  , which results in the 
narrowing system and holds the following equation of deposition of thickness 
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where   is the thickness of deposition and 0R  is standing for the distance from the axis of cylindrical 

boundary and z is the distance from z=0 to the point of calculation P. 
 

If   z=0   then   0R R      and if   0z z    then   .0R R   

 
Since velocities U and V are zero and pressure depends on z then we get the result presented in Eqs (1.1)-
(1.3) 
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Fig.1. Schematic diagram of the flow problem. 
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 We assume that the velocity component is invariant in the   and z directions, then the above 
equation becomes  
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Now, using the equation of continuity 
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where   is the dynamic viscosity and    
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 In present paper, we take the fractional model of Eq. (3.2) in the following form 
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subject to initial and constraint conditions are taken as 
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4. Solution of problem  
 
 To evaluate the solution of the problem, we use the integral transform as follows 
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where n  are the roots of  0 nJ R 0  . By using the recurrence relation of the Bessel function holds  
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 We take the zero order finite Hankel transform Eq.(2.4) of Eq.(3.3) and using Eqs (3.4), (4.1) and 
(4.2), we get 
 

  
 , 1 n 2

t n
n

PRJ R
D W W  
  


  . (4.3) 

 
 By using the ST on both sides of Eq.(4.3) and using Eqs (2.1), (2.13) and (3.4), we get the results 
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 Now, making use of the inverse ST on both sides of Eq.(4.5), and with the aid of Eq.(2.2), which is 
given 
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 On utilizing the inverse finite Hankel transform on both sides Eq.(4.6), and employing Eq.(2.5), we 
achieve the subsequent result 
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 If we set α 1  and 1   then we achieve the below result recently obtained in [45] 
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We can write the above result as 
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If we are taking the limit t  , both sides of Eq.(4.10), then we have  
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5. Conclusions 
 
 In this work, we have studied a mathematical model of a flow equation in a simple pipeline with 
fractional order. The study of pipeline narrowing is a crucial and fundament aspect in drinking water 
distribution processes, sewage system and in oil-well schemes. The analytical solution for the fractional 
modeling of fluid flow through a narrowing system is obtained with the aid of the Sumudu and finite Hankel 
transforms and their inverse after evaluating the concerned formulae for fractional calculus. The solution has 
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been developed in a closed form in terms of the ML function and Bessel’s function. Therefore the 
determined solution is very suitable for numerical simulation purpose. The results computed by us are 
general in nature and contain the known results existing in the literature. Hence, we can conclude that the 
generalized Caputo fractional operator is very useful in mathematical modeling of natural phenomena and 
the suggested technique can be used to examine such type of fractional models. 
 
Nomenclature 
 
 D  − substantial derivative 
 V   − velocity vector 
 t  − time 
    − density 
 p  − pressure 
    − kinematic viscosity 
    − dynamic viscosity 
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