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In this paper, we present an initial value technique for solving self-adjoint singularly perturbed linear 

boundary value problems. The original problem is reduced to its normal form and the reduced problem is 
converted to first order initial value problems. This replacement is significant from the computational point of 
view. The classical fourth order Runge-Kutta method is used to solve these initial value problems. This approach 
to solve singularly perturbed boundary-value problems is numerically very appealing. To demonstrate the 
applicability of this method, we have applied it on several linear examples with left-end boundary layer and right-
end layer. From the numerical results, the method seems accurate and solutions to problems with extremely thin 
boundary layers are obtained. 
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1. Introduction 
 
 The numerical treatment of singular perturbations is far from trivial because of the boundary layer 
behavior. In recent decades, this has been a field of increasing interest to applied mathematicians and 
numerical analysts in view of the challenges the problems there pose to researchers. In this section, we 
present a brief survey of the literature dealing with the numerical treatment of singular perturbation 
problems.   
 For a detailed theory and analytical discussion on singular perturbation problems one may refer to 
the books and high level monographs: O’ Malley [1], Nayfeh [2], Kevorkian and Cole [3], Bender and 
Orszag [4], Van Dyke [5], and Wasow [6].   
 For a detailed numerical and asymptotic discussion on singular perturbation problems one may refer to 
the books and high level monographs: Hemker [7], Hemker and Miller [8], Doolan et al. [9], Morton [10].   

                                                      
* To whom correspondence should be addressed 
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In general, a numerical solution of a boundary value problem will be more difficult than a numerical 
solution of the corresponding initial-value problems. Hence, we always prefer to convert the second-order 
problems into first order problems. Gasparo and Macconi [11-14] developed initial value methods for 
singularly perturbed two-point boundary value problems. Parallel initial value algorithms are developed for 
singularly perturbed boundary value problems by them.   

Reddy and Chakravarthy [15] proposed a method of reduction of order for solving singularly 
perturbed two point boundary value problems. The solution of the given two-point boundary value problem 
is numerically computed by solving two suitable initial-value problems easily deduced from the original 
problem. The method is very easy to implement and is tested on several linear, non-linear problems. They 
[16] proposed an initial value technique for solving singularly perturbed two point boundary value problems.  

Mishra et al. [17] studied an initial value technique for self adjoint singular perturbation boundary 
value problems. Natesan and Ramanujam [18] studied initial-value technique for singularly perturbed 
boundary-value problems for second-order ordinary differential equations arising in chemical reactor theory. 
An initial-value technique is presented for solving singularly perturbed two-point boundary-value problems 
for linear and semi linear second-order ordinary differential equations arising in chemical reactor theory. The 
required approximate solution is obtained by combining solutions of two terminal-value problems and one 
initial-value problem which are obtained from the original boundary-value problem through asymptotic 
expansion procedures. Error estimates for approximate solutions are obtained. The initial-value technique 
has been applied to solve various singularly perturbed boundary value problems for second-order ordinary 
differential equations subject to Dirichlet-type boundary conditions. 

Here, we present an initial value technique based on in [17] for solving self-adjoint singularly 
perturbed linear boundary value problems. The original problem is reduced to its normal form and the 
reduced problem is converted to first order initial value problems. This replacement is significant from the 
computational point of view. The classical fourth order Runge-Kutta method is used to solve these initial 
value problems. This approach to solve singularly perturbed boundary-value problems is numerically very 
appealing. To demonstrate the applicability of this method, we have applied it on several linear examples 
with left-end boundary layer and right-end layer. From the numerical results, the method seems accurate and 
solutions to problems with extremely thin boundary layers are obtained. 

 
2. Statement of the problem   

 
 We consider the following class of a self adjoint singularly perturbed two-point boundary value 
problem 
 

            
''      Ly a x y x b x y x f x    where0 x 1    

 
subject to          y 0   ,            y 1    
 
where , R  ,   is a small positive parameter and    ,  a x b x and ( )f x  are smooth functions and satisfy  

     * ' *,   ,   a x a 0 a x 0 b x b 0     . 

 Under these conditions the operator L  admits the maximum principle.   
 
2.1. Description of the method  
 
 To describe the method, we consider the singularly perturbed two-point boundary –value problem 
 

         ' '( ( ))  a x y x b x y x f x   for  0 x 1  ,             (2.1) 
 

with boundary conditions 
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  y 0   ,            (2.2a) 

 

   y 1                           (2.2b) 

 
where   is a small positive parameter   , ,0 1     are given constants, and the functions    ,  a x b x  
and ( )f x  are assumed to be sufficiently smooth in [0, 1].  

 We also suppose that    ,  a x b x satisfies   

   

       * ' *,   ,   a x a 0 a x 0 b x b 0     . 

 
Equation (2.1) can be rewritten as 
 

             '' ' ' ( )a x y x a x y x b x y x f x     , 

 

   
     

   
'

'' ' ( )

( )

a x b x f x
y x y x y x

a x a x a x
   

 
, 

 

or             '' ' y x P x y x Q x y x R x                                         (2.3) 

 

where     
 

'a x
P x

a x
 , 

 

     
 

b x
Q x

a x





, 

 

and    ( )
 

( )

f x
R x

a x





. 

 

 In general, finding the numerical solution of a second-order boundary value problem with 'y  term is 

more difficult as compared to a second-order boundary value problem without 'y  term. Therefore it is better 

to convert the second-order boundary-value problem without 'y  term to its normal form. 
 Now we use the transformation  
 
      ( )y x U x V x ,                                                                      (2.4) 

 
to reduce Eq.(2.1) to its normal form. 
 Differentiating Eq.(2.4), we get  
 

   ' ' '( ) ) ( ) ( )y x U x V X V x U x  .  

 
 Again differentiating above equation, we get  
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                   '' '' ' ' '' ' 'y x U x V x V x U x V x U x V x U x    , 

 

i.e.,               '' '' ' ' ''y x U x V x 2V x U x V x U x   , 

 
substituting these in Eq.(2.3), we get  
 

  

                    
 

'' ' ' '' ' '

( )[ ( )  ( ),

U x V x 2V x U x V x U x P x U x V X V x U x

Q x U x V x R x

          
 

 

i.e., 

  
               

         

'' '' '

' ' '

 

( ),

U x V x U x P x U x Q x U x V x

2V x U x P x U x V x R x

     
    

 

 

or  

           
   

           

'' '
''

' ' '

,
( )

U x P x U x Q x U x
V x V x

U x

R x 2V x U x P x U x V x

U x

 
 

     
 
 

 

 

i.e.,        '' ( )V x A x V x H x                                       (2.5) 

where   

             
 

'' 'U x P x U x Q x U x
A x

U x

 
 ,                                                 (2.5a) 

 

and               ' ' '[ ]

( )

R x 2V x U x P x U x V x
H x

U x

 
 .                        (2.5b) 

we choose  

     =exp ,
x

0

1
U x P s ds

2

 
 
 
 

                                       (2.6) 

 

differentiating Eq.(2.6), we get   
   

    ' exp
x

0

d 1
U x P s ds

dx 2

 
  
 
 

    exp
x x

0 0

1 d 1
P s ds P s ds

2 dx 2

   
     
   
   

 
 

 

  ( )
exp

x

0

1 P x
P s ds

2 2

           
 . 

 

 Again differentiating Eq.(2.6a) with respect to x, we get      
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'

'' [ ( )] ( )
         exp exp

x x2

0 0

P x 1 P x 1
U x P s ds P s ds

4 2 2 2

      
                     

  , 

 
Equation (2.5a) becomes 
  

       ' [ ( )]2P x P x
A x Q x

2 4
   ,  

   
Equation (2.5b) becomes 
  

  

       
' ( )

( ) exp ( )exp
( )

x x

0 0

R x V x 1 P x 1
H x 2 P s ds P x P s ds

U x 2 2 2

                         
   

  

       
' ( )

exp ( )exp
( ) ( )

x x

0 0

R x V x P x 1 1
2 P s ds P x P s ds

U x U x 2 2 2

                           
  , 

 

i.e.,      
( )

R x
H x

U x


 

 exp
x

0

R x

1
P s ds

2


  
 

, 

 

       exp .
x

0

1
H x R x P s ds

2

 
 
 
 
                                                                           (2.7) 

We have 

    ( )
  

( )

y 0
V 0

U 0
           (say), 

 

    ( )
   

( )

y 1
V 1

U 1
   (say)     ,x 0 1     and   , R  . 

    
 On multiplying Eq.(2.5) by  , we get  
 

         '' ( )1L V x V x A x V x H x      , 

 

i.e.,               ''  ( )1L V x V x W x V x Z x                  (2.8) 

 
with boundary conditions   
 
      V 0   ,      V 1     (2.9) 

where 
     W x A x  ,         ( )Z x H x  ,        W x W 0  . 
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 In order to obtain the solution  V x  of the problem, let ( )RV x  be the solution of the reduced 

problem obtained by putting  0   in Eq.(2.8) and by neglecting both boundary conditions. 
 We have 
 
        [ , ]RW x V x Z x x 0 1               (2.10)   

where 

     
( ) 

 R
Z x

V x
W x


   

[ , ]x 0 1
 
           (2.10a) 

 
 The asymptotic solution of Eq.(2.8) with the conditions (2.9) is given by 
 

  

       

   

/

/

 ( ) / ( ) exp ( ) /

( ) / ( ) exp ( ) /

x
1 4

R R

0

1
1 4

R

x

V x V x V 0 W 0 W x W s ds

V 1 W 1 W x W s ds

                    
              




[c.f. 3] 

 
where  1V x  and  2V x  are defined on [0, 1] by 

 

    exp ( ) /
x

1

0

V x W s ds
 
    
 
 
 ,                                                      (2.11) 

 

    exp ( ) /
1

2

x

V x W s ds
 
    
 
 
 .                                                              (2.12) 

 
Differentiating Eq.(2.11), we get 
 

  ' ( ) exp ( ) /
x

1

0

d
V x W s ds

dx

            
  

i.e.,  

   ' exp ( ) / ( ) /
x x

1

0 0

d
V x W s ds W s ds

dx

   
         
   
   
  = 

  

exp ( ) / ( ) /
x

0

1
W s ds W x

                  
 , 

 

   ' exp ( ) / ( ) /     
x

1

0

V x W s ds W x 0
 
        
 
 
 , 

 
using Eq.(2.11), we get 
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     ' ( ) /     1 1V x V x W x 0     [ , ]x 0 1   

 

   1V 0 1 . 

 
 Now differentiating Eq.(2.12), we get 
 

   ' exp ( ) /
1

2

x

d
V x W s ds

dx

            
 exp ( ) / ( ) /

1 1

x x

d
W s ds W s ds

dx

   
          
   
   
   

  exp ( ) / ( ) /  ,
1

x

1
W s ds W s

                
  

 

   ' exp ( ) / ( ) /
1

2

x

V x W s ds W s 0
 
        
 
 
 , 

 
using Eq.(2.12), we get 
 

     ' ( ) /2 2V x V x W x 0     [ , ]x 0 1 , 

 
   2V 0 1  

 
i.e., clearly   1V x  can be found as the solution of the initial –value problem 

 

     ' ( ) /     1 1V x V x W x 0     [ , ]x 0 1 , (2.13) 

 
   1V 0 1  (2.14) 

 
and  2V x  can be found as the solution of the initial –value problem 

 

     ' ( ) /2 2V x V x W x 0     [ , ]x 0 1 , (2.15) 

 
   2V 0 1 .  (2.16) 

 
 Now we write the solution as 
 

  

          
      

/

/

 ( ) / ( )

( ) / ( ) ( ).

1 4
R R 1

1 4
R 2

V x V x V 0 W 0 W x V x

V 1 W 1 W x V x O

    

    
 (2.17) 

 

 We can approximate the solution of the problem (2.8) by combining the function  RV x  given by 

(2.10a) with the solution of the initial-value problem (2.13)-(2.14) and (2.15)-(2.16). 
 Hence the solution of Eq.(2.1) is given by  
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      ( )y x U x V x . 

 
The whole method is extremely simple to implement. To this end, it is enough to use suitable codes 

for initial-value problems taking into account that the solution of Eqs (2.13) and (2.15) may change character 
in the interval of integration. In fact, these problems are generally non-stiff near the starting point, but we 
must expect stiffness as the integration goes to the end of the interval. 

So, the numerical solution of these problems requires a scheme automatically determining whether 
the problem can be solved more efficiently using a class of methods designed for non-stiff problems or a 
class of methods suitable for stiff problem. 
 
3. Numerical examples  

 
To demonstrate the applicability of the methods, we applied the present method to three singular 

perturbation problems. These examples have been chosen because either analytic or approximate solutions 
are available for comparison. 
 
Examples 3.1: Consider the following equation 
 

       
'' ( ) cos cos( )2 2y x y x x 2 2 x        ,            (3.1) 

 
i-th boundary conditions 
 
   y 0 0 , 

   (3.2) 
    y 1 0 , 

 
which has the exact solution  
 

   
 

( )
exp exp

,

exp cos2

1 1 x x

x
y x

1
1 x

              
        

 

 
now Eq.(2.17) becomes 
 

       '' cos cos( )2 2y x y x x 2 2 x        ,                        (3.3) 

    

     '' cos( )
cos( )

2
2xy x

y x 2 2 x


    
 

,  (3.4) 

 
by comparing Eqs (2.1) and (2.3), we have 
 
    ,a x 1  
 
   b x 1 , 
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     cos cos( )2 2f x x 2 2 x      , 

 
    ,P x 0  

 

    ,
1

Q x





 

 

      cos( )
,

2 2cos x 2 2 x
R x

   



 

 
also we have 
 

      ( )
1 1 1

A x 0 0
2 4


  


, 

   (3.5) 

    1
A x





, 

 
from Eq.(2.7), we have  
 

  
   cos( )

 ( ) exp
x2 2

0

cos x 2 2 x 1
H x 0 ds

2

    
 
   
 , 

   

  
   cos cos( )2 2

0x 2 2 x
e

   



, 

 

i.e.,       cos cos( )2 2x 2 2 x
H x

   



,                        (3.6) 

 
from Eq.(2.6), we have  
 

     exp
x

0

1
U x 0 ds

2

 
  
 
 

 , 

 

    0U x e , 
 

    U x 1 ,                                  (3.7)  
 

    ,                   V 0 0  
 

    ,         V 1 0  
 

Equation (3.3) can be written as 
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       '' cos cos( )2 2V x V x x 2 2 x                    (3.8) 
 

with boundary conditions 
       V 0 0 ,  
 

       V 1 0 ,            (3.9) 
 

as  0  Eq.(3.8) becomes 
 

     cos cos( )2 2
RV x x 2 2 x      ,                                    (3.10) 

 

    2
RV 0 1 2      (3.11) 

and  

       cos cos2 2
RV 1 2 2      .                                (3.12) 

 
Equation (2.8) becomes 
 

     
1

W x
    

, 

 

    W x 1                     (3.13) 
 

now Equation (2.11) becomes 
 

    exp  
x

1

0

1
V x ds

         
 ,                             (3.14) 

 

differentiating Eq.(3.14), we get  
 

  ' ( ) exp  
x

1

0

d 1
V x ds

ds

             
 , 

 

  exp  
x

0

1
ds

         


x

0

d 1
ds

ds

        
 , 

 

  

' ( ) exp  .
x

1

0

1 1
V x ds

                
  

 

 The first initial-value problem is given by 
 

   ' ( ) 1 1
1

V x V x
    

 

with 
   1V 0 1 ,  (3.15) 
 

now Eq.(2.12) becomes 
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     exp
1

2

x

1
V x ds

         
 .                                    (3.16)   

 

 The second initial-value problem is given by 
 

     '
2 2

1
V x V x

 
   

, 

with 
    2V 1 1  (3.17)  
 

Table 1. The maximum absolute errors for example 3.1 for  410  , h= 310 . 
 

x y(x) Exact solution Max. Absolute error 
0.0000 0.0000000 0.0000000 0.0000000 
0.0010 -0.0953248 -0.0951536 0.0001712 
0.0020 -0.1815593 -0.1812333 0.0003260 
0.0030 -0.2595668 -0.2591008 0.0004660 
0.0040 -0.3301286 -0.3295360 0.0005926 
0.0050 -0.3939515 -0.3932444 0.0007071 
0.0200 -0.8626122 -0.8610691 0.0015432 
0.0400 -0.9690687 -0.9673533 0.0017154 
0.0600 -0.9671498 -0.9654697 0.0016801 
0.0800 -0.9447580 -0.9431620 0.0015960 
0.1000 -0.9141079 -0.9126224 0.0014855 
0.2000 -0.6818311 -0.6811789 0.0006523 
0.4000 -0.1299758 -0.1313031 0.0013273 
0.6000 -0.0500067 -0.0516208 0.0016142 
0.8000 -0.5439070 -0.5437495 0.0001575 
1.0000 0.0000000 0.0000000 0.0000000 

 

Table 2. The maximum absolute errors for example 3.1 for  510  , h= 310 . 
 

x y(x) Exact solution Max. Absolute error 

0.0000 0.0000000 0.0000000 0.0000000 
0.0010 -0.2711214 -0.2710976 0.0000238 
0.0020 -0.4687263 -0.4686784 0.0000479 
0.0030 -0.6127388 -0.6126685 0.0000703 
0.0040 -0.7176820 -0.7175916 0.0000904 
0.0050 -0.7941419 -0.7940344 0.0001076 
0.0200 -0.9947897 -0.9946126 0.0001771 
0.0400 -0.9858406 -0.9856658 0.0001748 
0.0600 -0.9681169 -0.9679484 0.0001685 
0.0800 -0.9436571 -0.9434975 0.0001596 
0.1000 -0.9128163 -0.9126678 0.0001485 
0.2000 -0.6812441 -0.6811789 0.0000652 
0.4000 -0.1311704 -0.1313031 0.0001327 
0.6000 -0.0514594 -0.0516208 0.0001614 
0.8000 -0.5437653 -0.5437495 0.0000158 
1.0000 0.0000000 0.0000000 0.0000000 
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Example 3.2 
 
 Consider the following equation 
 

         '' ( ) 2y x 1 x y x 40 x x 1 2          ,                                  (3.18)  

 
with boundary conditions 
 
   y 0 0 ,   

 
  y 1 0 ,                                                                                            (3.19) 

 
which has the exact solution  
 

    y x 40x 1 x   

 
from Eq.(3.18) we have 
 

         '' 2y x 1 x y x 40 x x 1 2          . (3.20) 

 
This can be rewritten as 
 

       
 

''

240 x x 1 21 x
y x y x

      
 

,                                (3.21) 

 
comparing Eq.(2.1) and Eq.(2.3), we get  
 
   a x 1 , 

 
    ( )b x 1 x  , 

 

     2f x 40 x x 1 2       , 

 
   P x 0 , 

 

    ( )1 x
Q x

 



 , 

 

   
 240 x x 1 2

R x
    


, 

 

also we have     ( )
 ( ) ( )

1 x 1 1
A x 0 0

2 4
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i.e.,                ( )1 x
A x

 



,                               (3.22)  

 
from Eq.(2.7), we have 
  

   
 

 exp

2 x

0

40 x x 1 2 1
H x 0 ds

2

        
   
  

 

  
 2

0
40 x x 1 2

e
    


, 

 

i.e.,      
 240 x x 1 2

H x
    


,                                                                                       (3.23) 

 
from Eq.(2.6) we have 
 

   ( ) exp
x

0

1
U x 0 ds

2

 
  
 
 

  

  

   0e  
 
    U x 1                 (3.24) 

and  
    ,V 0 0  
 

     V 1 0  
 

Eq.(3.20) can be written as 
 

         '' 2V x 1 x V x 40 x x 1 2          , (3.25)   

 

with boundary condition  
 

    ,V 0 0  
 

    ,V 1 0                       (3.26) 
 

as  0  Eq.(3.25) becomes 
 

     ( ) 2
R1 x V x 40 x x 1 2        , 

 

   
 
( )

2

R

40 x x 1 2
V x

1 x

     


,                        (3.27) 
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hence  

    ( )
R

40 2
V 0

1

  
 , 

 

   RV 0 80  , (3.28) 

 
also we have 
 

   
 

R

40 1 1 1 2
V 1

1 1

     


, 

 

    ( )
R

40 2
V 1

2

  
 , 

  
    RV 1 40         (3.29) 

we have, 

    ( )1 x
W x

     
, 

  
    ( )W x 1 x   , 

 
hence Eq.(2.11) becomes, 
 

    exp ( ) /   
x

1

0

V x 1 x ds
 
    
 
 
 . (3.30) 

 
 The first initial-value problem is given by 
 

    ' ( )1 1
1

V x 1 x V x
 

   
, 

 

  1V 0 1                   (3.31) 

  
now Eq.(2.12) becomes 
 

   exp ( ) /
1

2

x

V x 1 x ds
 
    
 
 
 .                                    (3.32) 

 
 The second initial-value problem is given by 
 

     ' ( )  2 2
1

V x 1 x V x 


, 

 
   2V 1 1 .           (3.33) 
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Table 3. The maximum absolute errors for example 3.2 for  410  , h= 310 . 
 

x y(x) Exact solution Max. Absolute error 

0.0000 0.0000000 0.0000000 0.0000000 
0.0010 0.0399411 0.0399600 0.0000189 
0.0020 0.0798040 0.0798400 0.0000360 
0.0030 0.1195886 0.1196400 0.0000514 
0.0040 0.1592947 0.1593600 0.0000653 
0.0050 0.1989221 0.1990000 0.0000779 
0.0200 0.7838306 0.7840000 0.0001694 
0.0400 1.5358110 1.5360000 0.0001888 
0.0600 2.2558120 2.2560000 0.0001881 
0.0800 2.9438150 2.9440000 0.0001853 
0.1000 3.5998180 3.6000000 0.0001819 
0.2000 6.3998330 6.4000000 0.0001669 
0.4000 9.5998570 9.6000000 0.0001431 
0.6000 9.5998740 9.5999990 0.0001249 
0.8000 6.3998890 6.4000000 0.0001111 
1.0000 0.0000000 0.0000000 0.0000000 

 
Examples 3.3 
 
Consider the following singular perturbation problem 
  

  '( ( )) ' ( ) ( ) [ ( )]y x 1 x 1 x y x 1 x 1 x       
 

 + ( ) exp ( ) exp  2 21 x x
2 x 1 x 2 x 1 x

x

                        
,            (3.34) 

Table 4.The maximum absolute errors for example 3.2 for  510  , h= 310 . 
 

x y(x) Exact solution Max. Absolute error 

0.0000 0.0000000 0.0000000 0.0000000 
0.0010 0.0399546 0.0399600 0.0000054 
0.0020 0.0798307 0.0798400 0.0000093 
0.0030 0.1196278 0.1196400 0.0000122 
0.0040 0.1593457 0.1593600 0.0000143 
0.0050 0.1989842 0.1990000 0.0000158 
0.0200 0.7839805 0.7840000 0.0000196 
0.0400 1.5359810 1.5360000 0.0000193 
0.0600 2.2559810 2.2560000 0.0000188 
0.0800 2.9439820 2.9440000 0.0000186 
0.1000 3.5999820 3.6000000 0.0000184 
0.2000 6.3999830 6.4000000 0.0000167 
0.4000 9.5999860 9.6000000 0.0000143 
0.6000 9.5999870 9.5999990 0.0000124 
0.8000 6.3999890 6.4000000 0.0000110 
1.0000 0.0000000 0.0000000 0.0000000 
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having boundary conditions  
  
   y 0 0 , 

 
   y 1 0 ,                                                (3.35) 
 

which has the exact solution  
 

     exp exp
x 1 x

y x 1 x 1 x
x

              
 

 

Eq.(3.34) becomes 
 

          ''y x 1 x 1 x y x 1 x 1 x            

  + ( ) exp ( ) exp ,2 21 x x
2 x 1 x 2 x 1 x

x

                        
   (3.36) 

 

i.e.,         '' 1 x 1 x 1 x 1 x
y x y x

        
   

 -
( ) ( )

exp exp ,

2 22 x 1 x 2 x 1 x1 x x

x

                        
       (3.37) 

 
comparing Eqs (2.1) and (2.3), we have  
 
   a x 1  
 

    ( )b x 1 x 1 x    
 

        exp2 1 x
f x 1 x 1 x 2 x 1 x

x

                  
( ) exp2 x

2 x 1 x
         

,(3.38) 

 

   P x 0  
 

   
 1 x 1 x

Q x
    


 

 

   
  ( ) exp ( ) exp   2 21 x x

1 x 1 x 2 x 1 x 2 x 1 x
xR x

                               


 

 

also we have 

  
 

  ( ) ( ) ( )
1 x 1 x 1 1

A x 0 0
2 4

      


, 

 

  
   1 x 1 x

A x
    


,       (3.39) 
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Eq.(2.7) becomes 
 

    ( )exp
x

0

1
H x R x 0 ds

2

 
 
 
 
  

  

 ( ) 0R x e  
 

  i.e.,   ( )H x R x  
 

  
  ( ) exp ( ) exp   

 

2 21 x x
1 x 1 x 2 x 1 x 2 x 1 x

xH x

                               


,
 

(3.40) 

 
as Eq.(2.6) becomes 
 

    exp
x

0

1
U x 0 ds

2

 
  
 
 

 , 

 

   0U x e  

 
  U x 1  (3.41) 

we have  
   ,V 0 0  
 

                      V 1 0  
 

Eq.(3.36) can be written as 
 

 
        ''V x 1 x 1 x V x 1 x 1 x            

 
+ ( ) exp ( ) exp2 21 x x

2 x 1 x 2 x 1 x
x

                        
,       (3.42) 

 

with boundary conditions  
 

     V 0 0  

  V 1 0 ,            (3.43) 
 

as  0 Eq.(3.42) becomes 
  

 

       ( ) exp

( ) exp ,

2
R

2

1 x
1 x 1 x V x 1 x 1 x 2 x 1 x

x

x
2 x 1 x

                    
          

 

 



An initial -value technique for self-adjoint singularly ... 123 

  
 

  

 ( ) exp ( ) exp     2 2

R

1 x x
1 x 1 x 2 x 1 x 2 x 1 x

xV x
1 x 1 x

                               
 

 (3.44) 

hence 

   expR
1

V 0 1 2 2
          

,            (3.45) 

 

   expR
1

V 1 1 2 2
          

,            (3.46) 

we have, 

 

 
( )

1 x 1 x
W x

        
  

, 

 

   ( )W x 1 x 1 x   , 
 

Eq.(2.11) leads to 
 

    exp ( ) /   
x

1

0

V x 1 x 1 x ds
 
      
 
 
 ,            (3.47) 

 

      ' exp ( ) /   ( )
x

1

0

1
V x 1 x 1 x ds 1 x 1 x

               
 . 

 

The first initial value problem is given by 
 

      '   ( )1 1
1

V x V x 1 x 1 x
 

    
, 

 

  1V 0 1 .        (3.48) 
 

Now Eq.(2.12) becomes 
 

    exp ( ) /
1

2

x

V x 1 x 1 x ds
 
      
 
 
 ,            (3.49) 

 

       ' exp ( ) / ( ) /
1

2

x

V x 1 x 1 x ds 1 x 1 x
 

          
  

 
 . 

 The second initial-value problem given by 
 

      ' ( )2 2
1

V x V x 1 x 1 x    
 

with 

  2V 1 1             (3.50) 
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Table 5. The maximum absolute errors for example 3.3 for  410  , h= 310 . 
 

x y(x) Exact solution Max. Absolute error 

0.0000 0.0000000 0.0000000 0.0000000 
0.0010 0.0944957 0.0960674 0.0015717 
0.0020 0.1801083 0.1829067 0.0027984 
0.0030 0.2576682 0.2614042 0.0037360 
0.0040 0.3279287 0.3323613 0.0044325 
0.0050 0.3915730 0.3965020 0.0049290 
0.0200 0.8640755 0.8673714 0.0032959 
0.0400 0.9818980 0.9824170 0.0005190 
0.0600 0.9976332 0.9976700 0.0000368 
0.0800 0.9996957 0.9996914 0.0000043 
0.1000 0.9999614 0.9999591 0.0000023 
0.2000 1.0000000 1.0000000 0.0000000 
0.4000 1.0000000 1.0000000 0.0000000 
0.6000 1.0000000 1.0000000 0.0000000 
0.8000 1.0000000 1.0000000 0 .0000000 
1.0000 0.0000000 0.0000000 0.0000000 

 

Table 6. The maximum absolute errors for example 3.3 for  510  , h= 310 . 
 

x y(x) Exact solution Max. Absolute error 

0.0000 0.0000000 0.0000000 0.0000000 
0.0010 0.2705911 0.2718355 0.0012444 
0.0020 0.4680499 0.4697770 0.0017271 
0.0030 0.6121177 0.6139112 0.0017934 
0.0040 0.7172136 0.7188647 0.0016511 
0.0050 0.7938672 0.7952881 0.0014209 
0.0200 0.9982367 0.9982440 0.0000073 
0.0400 0.9999971 0.9999969 0.0000002 
0.0600 1.0000000 1.0000000 0.0000000 
0.0800 1.0000000 1.0000000 0.0000000 
0.1000 1.0000000 1.0000000 0.0000000 
0.2000 1.0000000 1.0000000 0.0000000 
0.4000 1.0000000 1.0000000 0.0000000 
0.6000 1.0000000 1.0000000 0.0000000 
0.8000 1.0000000 1.0000000 0.0000000 
1.0000 0.0000000 0.0000000 0.0000000 

 
4. Conclusions 

 
In this paper, we have discussed the application of initial-value techniques for some model problems 

involving small parameter ε. We have first transformed the original problem into the normal form and then 
converted it into two initial-value problems. It is a practical method and can be easily implemented on a 
computer to solve such problems. Three examples are given to demonstrate the efficiency of the proposed 

method. The maximum absolute errors  max i i
i

y x y  at different nodal points are tabulated in the tables 
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for     410  and 510  . The results further corroborate the applicability of the proposed method. It has 
been observed that the present method approximates the exact solution very well.   
 
Nomenclature 
 
   − a small positive parameter 

  ,   − real constants 

    ,  a x b x and (x ) − smooth functions in [0, 1] 

 
   

 

'a x
P x

a x
  

 
   

 
b x

Q x
a x





 

 
  ( )

 
( )

f x
R x

a x
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