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A computational model is presented to explore the properties of heat source, chemically reacting radiative, 

viscous dissipative MHD flow of an incompressible viscous fluid past an upright cone under inhomogeneous 
mass flux. A numerical study has been carried out to explore the mass flux features with the help of Crank-
Nicolson finite difference scheme. This investigation reveals the influence of distinct significant parameters and 
the obtained outputs for the transient momentum, temperature and concentration distribution near the boundary 
layer is discussed and portrayed graphically for the active parameters such as the Schmidt number Sc, thermal 
radiation Rd, viscous dissipation parameter  , chemical reaction parameter  , MHD parameter M and heat 

generation parameter  . The significant effect of parameters on shear stress, heat and mass transfer rates are also 
illustrated. 
 
Key words: free convection, finite difference, vertical cone, MHD, thermal radiation, viscous dissipation. 

 
1. Introduction 
 

The occurrence of mass transfer commonly exists in numerous chemical processing industries for 
instance food processing and polymer process.Magneto hydrodynamics is the science, which deals with the 
motion of an electrically conducting fluid in the presence of magnetic fields. The study of magneto 
hydrodynamics with heat and mass transfer in the presence of radiation has attracted many researchers and 
engineers due to diverse applications in different areas of science and technology. MHD plays an important 
role in geophysics, agriculture, petroleum industries, in exploration and thermal recovery of oil, geothermal 
reservoirs and underground nuclear waste storage sites. In the field of power generation, MHD is receiving 
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considerable attention due to the possibilities of much higher thermal efficiencies in power plants. It is worth 
mentioning that the basic solution of thermal convection from a heated or cooled surface with suction or 
injection has numerous practical applications ranging from cooling of manufactured products to local 
weather forecasting. 
 The consequences of viscous dissipation takes a vital part in free convection for the range of 
applications that are subject matter to huge amount of deceleration or which functions at high rotational 
speeds. Analyzing the temperature and heat transfer have enormous significance to engineers since its 
universal incidence in several branches of engineering and science.  
 Rao and Shivaiah [1] presented a finite element method solutions for the governing equations under the 
influence of chemical reaction on a transient (MHD) flow from a semi infinite vertical plate with viscous 
dissipation. Siddiqa et al. [2] studied the natural convection flow of a viscous fluid above a semi-infinite 
horizontal plate with internal heat generation and variable viscosity. Srinivasa and Easwara [3] emphasised the 
transient mixed convection flow over a vertical plate moving in a parallel free flow with heat generation and 
absorption. Ramli et al. [4] examined the MHD convection flow due to external forces and transfer of heat by 
ferrofluids above a moving plate with consistent heat flux. Lakshmi Narayana and Sibanda [5] showed the 
Soret and Dufour effects on a natural convection over a vertical wavy surface in a Darcy porous medium. 
Kumari and Nath [6] investigated the natural convection effects over a flat cone under porous medium with 
VWT/VWC or VHF/VMF and heat source/sink. Pal and Talukdar [7] used perturbation technique for transient 
magneto hydro dynamic mixed convection flow in a chemically reactive, radiative micro polar fluid and Ullaha 
et al. [8] studied the above said effects with  Maxwell fluid by homotopy analysis method. 
 A great number of engineering applications takes place at elevated temperatures and hence the 
knowledge of radiation and heat transfer is necessary for framing various models of industrial apparatus. Large 
amount of heat is generated when chemical reaction takes place in a process and because of this the temperature 
of the body increases. Several findings have been accounted on the mass transfer movement of a radiative 
fluids in the occurrence of MHD was studied by Sambath and Bapuji [9-12]. Muhaimin et al. [13] studied 
variable viscosity with thermally stratified impacts on magneto hydrodynamic free convective mass transfer 
over a porous wedge in the existence of chemical reaction. Zueco [14] presented the mixed convection mass 
transfer flow along a porous plate. Devi and Kumarai [15] discussed numerically the slip flow impacts on 
transient hydro magnetic flow over a enlarged exterior with thermal energy. Alam et al. [16] explored the 
analysis of transient magneto hydro dynamic natural convective flow of the heat transfer over a vertical porous 
flat plate with internal heat source. The consequence of double diffusion from a vertical truncated cone in a 
non-Newtonian fluid saturated porous medium with variable heat and mass fluxes wasaddressed by Awad et al. 
[17]. Cheng [18] executed the impact of MHD free convection flow with heat source in transient state. Khan et 
al. [19] examined the consequences of the transfer of heat energy flow of ferrofluids over a horizontal plate 
with consistent heat flux. Das  et al. [20] attempted MHD free convective flow of nanofluids past a permeable 
plate in a rotating system with thermal energy. Also researchers [21-23] portrayed the impact of chemical 
reaction, MHD with stagnation point flow in porous medium. Chamka et al. [24] studied  non-Darcy natural 
convective flow of nanofluid over a cone in a saturated permeable medium with homogeneous mass fraction 
flux. Ishak et al. [25] focused attention with similarity solutions for a vertical plate.  
 Recently the following investigators [27-33] presented electrically conducting, magneto 
hydrodynamic transfer of heat in a specific medium like Maxwell fluid, micro polar, nanofluid, Maxwell 
nanofluid with or without viscous dissipation, heat generation, absorption and mass flux. Magneto 
hydrodynamic convection flow due to the impacts of external forces and heat transfer over ferrofluids along 
a moving plate with uniform heat flux and second-order slip effects, chemical reaction with MHD stagnation 
point flow in porous medium were presented by the researchers [36-39].  
 In this study, the predominant idea is to simulate the numerical solution to radiative, chemically 
reactive, viscous dissipative MHD flow past a non- isothermal vertical cone in the occurrence of mass flux 
and heat generation by Crank-Nicholson scheme [26]. Such a thought is noteworthy in the research fields of 
biology and chemical engineering. The impacts of dissimilar relevant parameters are analyzed and the 
concluding results are demonstrated through graphs.  
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2. Mathematical formulation 
 
 In this article, an axi-symmetric, transient boundary layer flow of a viscous incompressible electrically 
conducting fluid past a vertical cone with inconsistent heat mass fluxes under the influence of chemical reaction, 
heat generation under steady magnetic field 0B , dissipation effects. The flow is chosen along the direction of the 
x-coordinate and is chosen along the exterior surface of the cone in the vertical direction and the y axis considered 
normally outward as shown in Fig.1. Since the outer surface is vast so the fluid flow extended towards infinity. 
The fluid taken for consideration being gray, absorbing-emitting but non- scattering medium because of this fact 
Rosseland approximation is employed to illustrate the radiative heat flux. Initially, when time t 0   the fluid as 
well as the outer surface of the cone is at rest with temperature wT   and concentration wC  at the wall and which is 

greater than the ambient temperature T  and ambient concentration C . When time t 0   the heat energy 

distributed from the exterior surface of the cone to the fluid medium at the rate of ( ) m
wq x ax , * ( ) n

wq x ax  and 
is retained at this level. With these preceding assumptions, the equations which governs the flow, continuity, 
momentum, energy and concentration with the help of Boussinesq approximation can be written in a Cartesian 
form as mentioned below 
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 The significant initial and boundary conditions are given by 
 

  : , , ,t 0 u 0 v 0 T T C C                  
for all    x    and    y,                                       
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y k
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,     
* ( )wq xC

y D
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   (2.5) 
  at, , x 0u 0 T T C C        ,    
 

  , , asu 0 T T C C y        .    
 

 The radiative heat flux expression rq

y




 appearing in the energy equation inthe y- direction is made 

simpler by utilizing the Rosseland approximation given by Brewster [40] 
 

  
*
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
. (2.6) 
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 Since the temperature variation within the flow is sufficiently small, we ignore higher order terms 

more than the first degree in T T   . The linear structure of Eq.(2.6) could be attained by escalating 4T 
into Taylor series about T . 
 

We obtain   4 3 4T T T 3T      .                                                          (2.7) 
 

 Applying Eqs (2.5) and (2.6) in Eq.(2.3), we have                                   
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 The local skin friction, local Nusselt number and local Sherwood number are  
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,                                                                                            (2.9) 
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 The time dependence assessments of skin friction, heat, mass transfer rate are given by  
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 Heat transfer coefficient is given by       
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 Establishing the following non dimensional variables for the parametric study 
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where   is the Eckert number as explained by Gebhert [34] and Jordan [35].   
 The above Eqs (2.1)-(2.5) be able to be written in dimensionless form 
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 The dimensionless appropriate initial, boundary conditions are  
 

  : , ,t 0 U 0 V 0 T 0    , C 0 for all X and Y,                                                            
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  ,U 0     T 0 ,     C 0    as   Y  . 
 

 Local shear stress, heat and mass transfer rate in dimensionless form are  
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 Dimensionless average skin friction heat and mass transfer rate are 
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Fig.1. Physical model and coordinate system. 
 

3. Method of solution 
 

 The finite difference scheme is one of the dependable procedure for solving partial differential 
equations. Crank–Nicolson method has been adopted to solve Eqs (2.17)-(2.20) with the help of Eq.(2.15). 
The integral region has been assumed to be a rectangular mesh with, X max = 1 and Y max = 18, where maxY
=  which is farthest from all periphery layers. The assessment of Y max was selected after a few initial 
examinations, so that the ultimate and penultimate periphery conditions of Eq.(2.15) are contented. The mesh 
sizes have been predetermined as ΔX = 0.05, ΔY = 0.05 and Δt= 0.01. In this assumption, size of the spatial 
mesh is decreased by 50% in x- direction, followed by in x and y directions and the outcomes are analyzed. It 

is noticed that it is contented with correctness up to the lenience limit of 510 . Hence, the mesh sizes 
adopted here are believed to be suitable for computations. Computations are conceded out until stability is 
attained. Central difference procedure is adopted for the computing spatial coordinates. The terms in the 
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PDE’s are transformed to difference equations and the ensuing algebraic problem is deciphered with the help 
of a well known Thomas algorithm. The differential coefficients associated in Eqs (2.22)-(2.24) are achieved 
by five point approximation formula then the integrals are assessed using Newton–Cotes formula. 
The Crank Nicholson Finite Difference equation equivalent to the equations are specified by 
Equation of Momentum 
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Concentration equation 
 

   

 
   

 

 

, , , ,

, , ,
, , , ,

, ,
,

Sc Sc

Sc

k 1 k k 1 k
i j 1 i j i j i j2 2

k 1 k k
i 1 j i 1 j i jk 1 k k k

i j 1 i j i j i j2

k k
i j 1 i j 1k

i j

t 1 t t 1 t t
C V C 1 U

4 Y 2 X 22 Y Y

C C C tt 1 t
C V C U

4 Y 2 X2 Y

C C t
V

4 Y

 



 



 

                            
             
      

  


  
 

, , , , .
Sc

k k k k
i j 1 i j i j 1 i j2

1 t t
C 2C C C

22 Y
 

                   

  (3.3) 

 
4. Exchange of views on results  
 

 Representative numerical upshots for the transient heat and mass diffusion in the occurrence of 
MHD, radiation, heat generation, viscous dissipation and chemical reaction will be discussed and which is 
the prime idea in this section. 
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5. Conclusion 
 
 In this work, we have studied the governing equations for the transient radiative MHD heat and mass 
transfer flow past an upright cone in the existence of a chemical reaction has been formulated and numerical 
solutions have been derived using Crank -Nicholson method. 
 It is noticed momentum of the fluid flow raises with a rise in Rd, Pr, ε. 
 Temperature of the fluid decreases with a rise in   and Schmidt number. 
 Temperature of the fluid raises with a rise in ε. 
 Concentration of the fluid rises with a decrease in the Schmidt number and  . 
 

Nomenclature  
 

 a, b constants  
 0B  magnetic field induction   

 C  concentration in the fluid  
 PC  specific heat   

 C  concentration far-away from cone surface 

 D mass diffusivity 2 1m s 
   

 LGr  Grashof number (thermal)  

 cGr  Grashof number (mass) 

 g gravitational force 2ms   
 k thermal conductivity Wm-1K-1 
 1k  chemical reaction parameter (dimensional)    

 k  mean absorption coefficient  
 L referal length m  
 m variational power law exponent in surface concentration  
 N ratio due to buoyancy force  (non dimensional) 
 xNu  heat transfer rate (local)  

 LNu  heat transfer rate (average) 

 XNu  local Nusselt number (non- dimensional)  

 Nu  average heat transfer rate  (non-dimensional) 
 n variational power law exponent in surface temperature  
 Pr Prandtl number  
 0Q  heat generation and absorption coefficient (dimensional)   

 qr  thermal radiation (dimensional) 

 R local radius (dimensionless) 
 dR  radiation (dimensionless)  

 r local radius of the cone m 
 Sc Schmidt number  
 T temperature (non-dimensional)   

 T   temperature 0K  
 t time (non-dimensional)  
 t  time  s 
 U  momentum along X direction (non-dimensional) 
 u  momentum over x direction (dimensional)  ms-1  
 V  momentum along Y direction (non-dimensional) 
 v  momentum over y direction (dimensional)  ms-1  
 X  spatial co-ordinate alongside the cone generator (non-dimensional)  
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 x spatial co-ordinate alongside the cone generator (dimensional) m  
 Y spatial co-ordinate perpendicular to cone generator (non-dimensional) 
 y  spatial co-ordinate perpendicular to cone generator  (dimensional) m 

   thermal diffusivity 2 1m s   

   volumetric thermal expansion 0 1k  

 c  coefficient of volumetric expansion due to concentration   

   heat generation/absorption parameter (non-dimensional) 
 t  time step (non-dimensional)  
 X  grid size ( X  direction) (non-dimensional) 
 Y  grid size (Y  direction) (non-dimensional)  
   parameter of chemical reaction  (non-dimensional)  

   density kg 3m  

   cone apex half-angle     

   dynamic viscosity kg 1 1m s   

   kinematic viscosity 2 1m s   
   electrical conductivity    
 *  Stefan-Boltzmann constant 
 x  local shear stress 

 X  local shear stress  (non-dimensional)   
 

Subscripts  
 

 w  wall condition  
   free-stream condition 
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