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The problem of gap estimation for a break of a continuous welded rail is studied. The track is represented as a 
semi-infinite rod on elastic-based damping. Static and dynamic solutions are obtained. It is shown that during the 
rail break, the dynamic factor does not exceed 1.5. We derive equations for thermal deformation of the welded 
rail of jointless track on an elastic foundation in the presence of the insert into the base with another characteristic 
stiffness. It is shown that the presence of the insertion of up to 20% of the length of the rail, with both large and 
small stiffness, has a little effect on the stress-strain state (SSS) of the track. The presence of a rigid insert may 
increase the clearance of an accidental break of the rail, which has a negative effect on traffic safety. 
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1. Introduction 
 
 Continuous welded rail is now the main type of track for railways. For high-speed lines this way is 

considered to be the only possible (Takagi [1]). Its successful use is related to solving two problems: rail 
rupture under low temperature and rail stability under high temperature. Operating experience of continuous 
welded rail shows that the rupture of the rail track on the macadam ballast in compliance with all 
requirements of stowage and securing, clearances occurs up to 6-8 cm (Kondratyev [2]). These gaps are 
acceptable and do not cause derailment. There are estimations (Novakovic et al. [3]) of static clearance, 
which remains after fracture and after the passage of a train. Rupture of the rail occurs usually under the train 
and at break moment the dynamic displacement of the rail ends exceeds the static ones (Novakovic et al. 
[3]). Until now, there is no solution of the problem of dynamic vibrations of the rail at break. Additional 
limitation on using of continuous welded is related to the influence of stiffness of the rail base on the stress-
strain state of welded rails (Kondratyev [2]). At high rail base stiffness and rigid connection of the rail and 
the base, there are significant stresses that can cause it to break (in winter) or can cause bulging (in summer). 
At low stringency of connection and opportunities to slip, stresses in the rail reduce. On other hand, in this 
case, there is a risk of a large gap at random break of welded rail that violates traffic safety (Andreev [4]). 

 

2. Models 
 

2.1. Dynamic displacement of the rail 
 

 To estimate the dynamic displacement of the rail we consider a semi-infinite rod lying on a solid 
elastic-based damping. (Fig.1). 
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Fig.1. The computational model of the rail on the basis of elastic-damping (ballast). 

 
 Stress  which is equal to the break stress for the rail is instantly applied to the end of the rod. For 
thermostrengthened welded rails the break stress is 400 MPa. The problem under consideration has not yet 
been solved. In practice, one believes that the disclosure of the dynamic gap is 1.5-2 times greater than the 
static. An equation of oscillations of the system is given by Zhanga Guo-Dong and Guo Bao-Zhu [5]; 
Beshliu [6] 
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where K  is the linear stiffness, B- is the damping per unit length 
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, E - is the modulus of elasticity of 

the rail, - is the density of steel, F - is the cross-sectional area of the rail, γ - is the coefficient of inelastic 
resistance, ω - is the frequency oscillation,  - is the offset,  - is the speed,  - is the acceleration. 

Equation (2.1) is considered under zero initial conditions and the following boundary conditions 
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where  is the breaking stress for the welded rail,  is the Heaviside function. The solution of Eq.(2.1) for  
x = 0, i.e. the displacement of the rail end is given by the formula 
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where 0  is the stress, 
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 - is the wave propagation velocity in the rail,   - is the density of steel, 
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To estimate the dynamic factor, consider a static value of the gap. The equation for evaluating the 
displacement at break rail has the form 

 

 xxEFu Ku 0  . 
(2.3)

 
 

 A solution of Eq.(2.3) for x = 0 is given by 
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