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The paper is devoted to issues of estimating free surface elevations in rigid cylindrical fluid-filled tanks under 
external loadings. The possibility of baffles installation is provided. The liquid vibrations caused by lateral and 
longitudinal harmonic loadings are under consideration. Free, forced and parametrical vibrations are examined. 
Modes of the free liquid vibrations are considered as basic functions for the analysis of forced and parametric 
vibrations. The modes of the free liquid vibrations in baffled and un-baffled cylindrical tanks are received by 
using single-domain and multi-domain boundary element methods. Effects of baffle installation are studied. The 
problems of forced vibrations are reduced to solving the systems of second order ordinary differential equations. 
For parametric vibrations the system of Mathieu equations is obtained. The numerical simulation of free surface 
elevations at different loadings and baffle configurations is accomplished. Beat phenomena effects are considered 
under lateral harmonic excitations. The phenomenon of parametric resonance is examined under longitudinal 
harmonic excitations. 
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1. Introduction 

 
Thin-walled structures are widely used in different engineering areas: chemical and aerospace 

industries, transportation, oil and gas producing. Usually these structures operate at intensive thermal and 
stress loadings, in interaction with fluids located in their containers. Many issues and challenges arise in 
design, and impact simulation of liquid storage tanks. Failures of these tanks, following destructive 
earthquakes or explosives, may lead to environmental catastrophes, loss of valuable contents, and disruption 
of fire-fighting efforts. Liquid sloshing often occurs when extreme loads are applied to the structures with 
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compartments partially filled with different liquids. So the topical issue here is a problem of estimating 
frequencies and modes of vibrations of such facilities. The first research devoted to the fluid-structure 
interaction appeared in the 1960ies when the first missions to Jupiter failed. Among other studies the paper 
of Kumar [1] should be mentioned. Further research works were devoted to free vibrations of prismatic and 
cylindrical tanks in 2D formulations (Biswal et al. [2]). Liquid sloshing also a causes damage of roofs and 
upper walls of storage tanks. Many inadequately designed tanks and liquid storages have been damaged in 
extensive earthquakes.  

Sloshing frequencies and mode shapes for two- and three-dimensional rectangular tanks were 
obtained by Abramson [3] by the method of variables separation. A comprehensive review of sloshing 
phenomenon was made by Ibrahim [4]. It should be noted that it is difficult or impossible to obtain analytic 
solutions for tanks and reservoirs of complicated geometrical shapes. So, a lot of numerical methods have 
been employed for solving linear boundary value problems of liquid sloshing. Ru-De [5] presented finite 
element methods for analysis of linear liquid sloshing in the upright cylindrical tank under lateral excitations. 
Note that such 3-D finite element analysis of fluid-structure-soil interaction in nonlinear statement is 
complex and extremely time consuming. Several simplified theoretical investigations were conducted, eg. By 
Cho et al. [6], and other numerical methods were elaborated. Faltinsen and Timokha [7] developed analytical 
linear multimodal methods to analyze liquid slosh in spherical tanks. The volume-of-fluid method was 
developed by Kim and Lee [8] and Kim et al. [9]. The dynamic analysis of fluid-filled shell structures using 
coupled finite and boundary element methods was discussed in [10-11]. To damp the liquid motion, reduce 
structural loads and prevent instability a lot of slosh-suppression devices have been proposed (Choudhary 
and Bora [12]). These devices are rigid or elastic ring baffles of different sizes and orientation, vertical 
partitions, various plates partly covering the free surface [13-14]. Design of such devices also requires high 
accuracy in estimating the sloshing characteristics. Usually, the effect of baffles can be seen only after their 
installation. But such an experimental work is too expensive. So the development of computational 
technologies for qualified numerical simulation of baffle influence is a very topical issue. One of the 
pioneering papers in the area was written by Miles [15]. The effect of baffles on the natural sloshing 
frequencies was also studied by Gedikli and Erguven [16] with the boundary element method. This method 
has certain advantages and gives new qualitative possibilities in modeling fluid-structure interaction process 
(Brebbia et al. [17]). In the basic equations the functions and their derivatives are defined on the domain 
boundaries only. This allows us to reduce drastically the dimension of the problem. But matrixes of the linear 
algebraic systems of equations obtained at discretization are dense and non-symmetric, and it leads to 
increasing the computational costs. It was the reason why multi-domain or macro-element methods based on 
using boundary elements have been elaborated for solving boundary value problems [17-19]. The main idea 
of the multi-domain approach consists in dividing an initial domain into smaller ones (sub-domains or 
macro-elements). Auxiliary interface surfaces are involved to divide the domain, and unknowns here are the 
velocity potential and flux. Continuity conditions are formulated on fictitious boundaries. Then the systems 
of linear algebraic equations are established for each macro-element and a global system of equations is 
formed by assembling equations of all macro-elements using consistency conditions in common interface 
nodes. The multi-domain BEM is especially effective at numerical simulation of sloshing in tanks with 
baffles [13, 18, 19]. 
 In spite of the considerable amount of research in the area there are a lot of problems which need to 
be scrutinized. This paper is devoted to free and forced liquid vibrations in baffled and un-baffled cylindrical 
tanks filled with an incompressible ideal liquid. Reservoirs with both horizontal and vertical baffles are 
considered. The lateral and longitudinal harmonic loadings are supposed to be applied to the structures under 
consideration. Beating effects and parametric resonances are analyzed. 
 
2. Problem statement 
 
 In this paper, problems connected with liquid vibrations in rigid cylindrical tanks with and without 
baffles are considered. The reservoirs under consideration are presented in Fig.1. The horizontal or vertical 
baffles are installed into cylindrical reservoirs.  
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where p0 is for atmospheric pressure. If small oscillations of the liquid are considered (a linearized 

formulation is studied), then 1
2
 , and we have 
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 The pressure p on the shell walls in the absence of the horizontal and vertical volume forces is 
determined from the linearized Bernoulli equation as follows 

 

  






 



 gz
t

pp 0 . (2.6) 

 
 From formulas (2.4)-(2.6) one can conclude that evaluating the liquid pressure requires calculating 
the liquid potential Ф. Assuming the liquid to be inviscid and incompressible, the irrotational fluid motion in 
the 3D reservoir is described by the Laplace equation for the velocity potential . This formulation assumes 
that the fluid remains irrotational if it is irrotational initially. 
 To determine this potential a mixed boundary value problem for the Laplace equation is formulated. 
The non-penetration condition on the wetted tank surfaces S1 is applied [10, 18]. On the free surface (z = 0) 
the following dynamic and kinematic boundary conditions must be satisfied 
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where an unknown function  tyx ,,  describes the shape and position of the free surface. Thus, for the 
velocity potential we have the following boundary-value problem 
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where 0pp   is received from Eq.(2.5) at  , ,z x y t  . 

 The solvability condition for the Neumann problem Eq.(2.8) is given as follows [7] 
 

  

0dS0
S0





 n
. (2.9) 

 
 So, for estimating liquid vibrations in the cylindrical tank depicted in Fig.1a we must solve the 
boundary value problem (2.8), (2.9). 
 To estimate the liquid vibrations in the presence of horizontal baffles (Figs 1b, 1c) the multi-domain 
boundary element method is used [17]. In doing so, we introduce an "artificial" interface surface Sint [13, and 
divide the region filled with the liquid into two parts, namely: ,1 2   bounded by surfaces S11, Sbaf, Sint, Sbot  

and S12, Sbaf, Sint, S0, respectively. On the interface surface Sint the following boundary conditions are 
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specified [17] 
 

 
int int

int int

,
1 2

1 2
S S

S S
 

 

 
    

 n n
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 So, considering the reservoirs with horizontal baffles we obtain Eqs (2.8)-(2.10) to determine the 
unknown functions  tyx ,,  and  tzyx ,,, .  

 Consider the cylindrical quarter tank (Fig.1d). Using the cylindrical coordinate system  zr ,,  we 
have the following boundary value problem 
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with orthogonality condition (2.9), and 0pp   obtained from Eq.(2.5) at  yxtz ,, . 

 Consider at first the following auxiliary boundary value problem 
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Differentiate the forth relation in Eq.(2.12) respect to t and substitute the obtained equality for 
t


 

into the third relation. Further we represent this auxiliary function  as    , , , , ,i tt x y z e x y z   , and 

come to the following eigenvalue problem 
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Note that for the cylindrical quarter tank we have 






 
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2

0Rr0zS1 .  

 Solving Eqs (2.13) we can obtain the eigenfrequencies and eigenvectors for both un-baffled and 
baffled tanks with different baffle configurations.  

 
3. Reducing to systems of boundary integral equations 
 
3.1. Shells of revolution without baffles 
 

The main relation for determining the function  from Eq.(2.13) can be written for an arbitrary fluid 
domain with boundaries ,0 1S S  in the form [17] 
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Then Eqs (2.13) are reduced to the system of integral equations as in [10, 18] 
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where P – P0  is the Cartesian distance between points P and P0. In Eqs (3.2) for convenience we denote by 
0 the values of potential  in the nodes of the free surface S0, and by 1 its values in the nodes of the wetted 
surfaces S1 of the shell.  
 The following integral operators are introduced 
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With Eqs (3.3) the boundary value problem (2.13) takes the form  
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After excluding the function 1 from Eqs (3.4) we obtain the following eigenvalue problem relative 

to the potential values 0 on the free surface only 
 

  ( ) ( ) , / .1 1 2
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The solution of Eq.(3.5) gives natural modes and frequencies of liquid sloshing in the rigid shell. 

Consider the boundary value problem (2.8), (2.9) for an arbitrary shell of revolution. In the cylindrical 
coordinates system (r, z, ) we have  
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 Here  is harmonica number, indexes k are mode numbers corresponding to . Thus, frequencies 

and modes of free vibrations are considered separately for different values of . From Eqs (2.7) and (3.6) the 
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following expression is received for the free surface elevation 
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Let  be a generator of the surface S1. Reducing integrals in Eqs (3.3) to one-dimensional ones we 

obtain the system of one-dimensional integral equations as in Gnitko et al. [18]. For integrals in Eqs (3.3) we 
have for each harmonic  
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Evaluation of integral operators in Eq.(3.8) is carried out by the method proposed in [18], [19]. From 

Eqs (3.5), (3.8) the basic functions k are received. Substitute them into expressions (3.6) for the velocity 
potential and Eq.(3.7) for the free surface elevation.  

With Eqs (3.6), (3.7) it is established that the functions  and  satisfy the following equations 
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Then insert Eqs (3.6), (3.7) for  and  into the boundary dynamical condition (3.5) for pressure on 

the free surface at  yxtz ,, . 

As in the cylindrical system of coordinates there is  cosx , we will be interested only in 

axisymmetric ( = 0) and non-axisymmetric ( = 1) modes in expressions (3.6), (3.7). Using Eqs (2.5), (3.6), 
(3.7) we come to the following equation on the surface S0 
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Accomplishing the dot product of Eq.(3.10) and  M1l10l ,;,   and having used 
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orthogonality of modes, we receive the uncoupled system of ordinary differential equations of the second 
order 
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       To solve system Eq.(24) the initial conditions are required. 
 
3.2.Cylindrical tanks with baffles 
 
 The singular integral equations for the shell of revolution with ring baffles were received and 
described in detail by the authors in [11, 18]. It should be noted that the system of second order differential 
equations in this case has also the form Eqs (3.11), but with other modes and frequencies. 
 Consider the quarter tank, Fig.1d. According to Ibrahim [4] we assume that for the shell of 
revolution with two vertical baffles we can seek the potential  as follows 
 

 
   cos ,

N M

k k
0 k 1

2 d t r z 
 

      . (3.12) 

 

Using this relation we satisfy boundary conditions from Eqs (2.11) on the vertical baffles. The 
system of singular integral equations for k(r,z) acquires the form analogical to system (3.2), (3.8), but in 
Eqs (3.8) we set l = 2. Note that the system of second order differential equations has again the form (3.11), 
but with other expressions for modes and frequencies. 

 
4. Free vibrations of the liquid in un-baffled and baffled cylindrical tanks 
  

Vibrations in an oscillatory system are called free or natural if they occur after the system has been 
taken out of equilibrium by some initial excitations and then left to itself. 
 Consider circular fluid-filled cylindrical shells of radius R with a flat bottom. The filling level in all 
shells is denoted by H. The installation of horizontal or vertical baffles is supposed. The horizontal baffle is 
considered as a circle flat plate with a central hole with radius Rbaf (the ring baffle). The vertical coordinate of 
the baffle position is H1 (H1 < H).The radius of the interface surface is denoted by R1 (see Fig.1c), and for the 
filling level we have 21 HHH  . Considering the vertical baffles, we suppose that the cylindrical tank is 
divided by two orthogonal walls as shown in Fig.1d. Numerical evaluations of frequencies for the un-baffled 
cylindrical shell are provided for validation of the proposed boundary element method (BEM). The accuracy 
 = 10-3 is achieved with 120 boundary elements along the bottom, 120 elements along wetted cylindrical 
parts, and 100 elements along the radius of the free surface. Table 1 below provides the numerical and 

analytical values of the frequency parameter g22 /  and frequencies  for liquid sloshing at 

circumference number  = 1 supposing R = 1.0m and H = 1.0m.  
 The analytical solution of Ibrahim [4] is used here for comparison and validation 
 

 
tanh ,

2
1k 1k

1k
H

g R R

     
      

cosh cosh 1k k k
k 1J r z H

R R R
              

     
,     ...,21k  .   (4.1) 

 
where values k  are roots of the equation  
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     1
0 2

dJ x
2 J x J x

dx
    , (4.2) 

 

and      xJxJxJ 210 ,,  are Bessel functions of the first kind. 

 

Table 1. Frequencies and frequency parameters for an un-baffled cylindrical shell,  = 1. 

 

k 1 2 3 4 5 
Frequency 
parameter 

BEM 1.750 5.332 8.538 11.709 14.870 
Formula (4.1) 1.750 5.331 8.536 11.706 14.864 

Frequency, BEM 4.141 7.227 9.1429 10.707 12.071 
 

Next, the influence of horizontal baffles is discussed. The natural sloshing frequencies are calculated 
for  = 1 at H2= 0.5m, H2 = 0.9m, and with R1 = 0.7m. A comparison of results obtained with the proposed 
multi-domain BEM (MBEM) and the analytically oriented approach presented by Gavrilyuk et al. in [21] is 
shown in Tab.2. 

 

Table 2. Comparison of analytical and numerical results,  = 1. 

 

Position  method n = 1 n = 2 n = 3 n = 4 n = 5 
H2 = 0.5 MBEM 1.3663 5.2941 8.5359 11.7097 14.870 

[21] 1.3662 5.2940 8.5357 11.7092 14.864 
H2 = 0.9 MBEM 0.7079 4.5069 8.1947 11.5556 14.850 

[21] 0.7079 4.5068 8.1945 11.5550 14.832 
 

In Tab.3 the frequencies of liquid vibrations are listed for an un-baffled cylindrical shell (UB), the 
cylindrical shells with horizontal (HB) and vertical (VB) baffles for  = 0, 1. 
 
Table 3. Frequencies of liquid vibrations in different cylindrical tanks. 
 

 shell type n = 1 n = 2 n = 3 n = 4 
 
 

0 
 

UB 6.1248 8.2919 9.98475 11.4295 
HB, H2=0.5 6.0654 8.2896 9.98475 11.4295 
HB, H2=0.9 4.7242 7.7948 9.70352 11.2043 

VB 6.1248 8.2919 9.98475 11.4295 
 
 

1 

UB 4.1424 7.2286 9.14726 10.7120 
HB, H2=0.5 3.6520 7.2028 9.14565 10.7120 
HB, H2=0.9 2.6340 6.6452 8.96218 10.6436 

VB 5.4582 8.1067 9.87918 12.6574 
 

 The frequencies of reservoirs with horizontal baffles are smaller compared to un-baffled ones for 
10, . Installation of vertical baffles moves the spectrum of resonant frequencies towards high 

frequencies oscillations for 1  and does not influence axisymmetric frequencies, 0 . Results 
presented here may be used for resonant frequency turning. 
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5. Forced and parametric liquid vibrations  
 
5.1. Cylindrical shells under lateral harmonic excitations 
 
 Cylindrical shells with and without baffles are considered. Hereinafter, for all the shells we suppose 
that the radius is R = 1m, and filling level is H = 1m. The tank is subjected to periodic loading 
  tata 1x  cos  that is applied in the horizontal direction. So, the only non-axisymmetric modes with 

 = 1 are under consideration. Suppose that before applying the horizontal loading the reservoir was at the 
state of rest. So, we need to solve system (3.11) under zero initial conditions. It follows from Eqs (3.11) that 
under these initial conditions we obtain 

 

  
     

 
,

cos cos , , , .
,

1k1 1k
1k 1k 1k2 2

1k 1k1k

ra F
d t t t F k 1 M


     

   
 (5.1) 

 
To obtain the free surface elevation we use Eq.(3.7). Figures 2a and 2b show time-histories of the 

free surface elevation at the points . ,0 5R z     and ,R z    , respectively, at  = 0,  = 3Hz, 1a 1  
during 10 sec. 

 

 
                             a                                              b                                        c 

 
Fig.2. Time-histories of the free surface elevation. 

 
 It should be noted that convergence is achieved when M = 4, Eq.(3.7). Figure 2a demonstrates 

differences in  at M = 2 (dashed line) and M = 4 (solid line). Results for M = 4 and M = 5 practically 
coincided. Consider the excitation   t3tax cos . Its frequency is apart from the eigenfrequencies of both 

the un-baffled shell and the shell with vertical baffles. Figure 2c shows an essential decrease in the liquid 
sloshing amplitude in the presence of vertical baffles. The black line here corresponds to the cylindrical shell 
without baffles and the green line corresponds to the free surface elevation in the presence of vertical baffles 
at the point  = 0,  zR,  during 15 sec.  

 Figures 3a and 3b show time-histories of the free surface elevation at the points  = 0, 
 zR50 ,.  and  = 0,  zR, , respectively, at  = 4 Hz during 50 sec. 
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                                                    a                                                         b 

 
Fig.3. Time-histories of the free surface elevation, at  = 4 Hz. 

 
The green lines here correspond to the free surface elevation in the presence of the horizontal baffle 

(H2 = 0.9m, R1 = 0.7m). From the results obtained one can conclude that when excitation frequency  = 4Hz 
approaches the first natural sloshing frequency = 4.14 Hz the beat phenomenaeffect takes place. After the 
baffle installation the oscillation amplitudes decrease drastically. It should be noted that the amplitudes of the 
free surface elevation in the un-baffled tank at beating are very large, so the problems in nonlinear 
formulation need to be considered. Note that for the cylindrical quarter tank, Fig.1d, the beat phenomena 
with smaller amplitudes occur when the excitation frequency is near = 5.5 Hz.  
 
5.2. Cylindrical shells under longitudinal harmonic excitations 

 
 Consider shells depicted in Fig.1 under longitudinal harmonic excitations   cosz 2a t a t    only. 

Then system (3.11) is transformed to uncoupled Mathieu equations  
 

  

cos
, , .2 2

0k 0k 0k
a t

d 1 d 0 k 1 M
g

 
     

 
  (5.2) 

 
 The parametric vibrations of baffled and un-baffled cylindrical shells caused by longitudinal 

excitations   cosz 2a t a t    at different excitation frequencies  are examined. Figures 4a, 4c, 4e 

correspond to time histories of the free surface elevation and Figs 4b, 4d, 4f present phase portraits of un-

baffled shells in coordinates t,  at the point ,0 z     at   . ,01d 0 0 05    . ,0kd 0 0 0

 , , , , .0kk 2 M d 0 0 k 1 M    Here and hereinafter green lines are graphs of the vertical excitations, by 

numbers 1 and 2 the time-dependent graphs of free surface elevations of un-baffled cylindrical tanks (Fig.1a) 
and tanks with horizontal baffles (Fig.1b) are marked off. The parameters of baffle are H2 = 0.9m, R1 = 0.7m. 
It has been ascertained that the influence of vertical baffles (Fig.1d) is not sufficient in the case of 
longitudinal excitations.  

 Equations (5.2) are well-known and their solutions have been the subject of a lot of research. In this 
paper, the algebraic method for their solution is in use [22]. 

 It should be noted that as against the forced lateral excitations with zero initial conditions for all 
unknowns, in the case of parametric vibrations it is necessary to set at least one nonzero initial value for 
receiving nonzero solutions of Eqs (5.2).  
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                  a                                                                                    b 

 = 3 Hz, 1a2   

 
              c                                                                                  d 

 = 6.125 Hz, 1a2   

 
          e                                                                                              f 

 = 12.25 Hz, 1a2   
 

Fig.4. Time histories and phase portraits of the free surface elevation. 
 
 The free surface oscillation under vertical harmonic excitation is the parametric sloshing. Therefore, 

some unstable vibrations may occur depending on the values of parameters. The sub-harmonic (or principle) 
parametric resonance occurrs when the liquid container is vertically excited at the frequency close to the 
doubled natural sloshing frequency. It leads to an infinitel increase in the free surface elevation (Figs 4e, 4f). 

 It should be noted that  = 6.125 Hz is the first natural frequency of the un-baffled tank. Analyzing 
the phase portrait corresponding to this frequency one can conclude that the system is near loosing its 
stability, but the time history shows a periodic behaviour (Fig.4c) For the near twice natural frequency of the 
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 Consider simultaneous actions of lateral and longitudinal excitations. The presence of internal 
parametric resonance results in a considerable disturbance of non-axisymmetric high-frequency modes in 
these cases. Let  = 12.25 Hz and   cosx 1a t a t  ,   cosz 2a t a t   , .1 2a a 1   In this case the 

amplitude of the modes k =5 for the un-baffled tank (Tab.1) and k =4 for the quarter tank (Tab.2) are excited 
considerably because of resonance effect. So if the initial data for the un-baffled tank are  

 

           , , , , , .0k 1k 1k 1k 15d 0 d 0 d 0 0 k 1 M d 0 0 k 5 d 0 0 05         ,      (5.5) 

 
then mode  = 1, k =5 becomes dominant. 

 Figure 7a shows the free surface elevation of the un-baffled tank in the absence of longitudinal 
excitations at the point  = 0,  zR, ,  = 12.25 Hz. Here the beating effect appeared. Figure 7b 
shows the free surface behaviour at simultaneous actions of lateral and longitudinal excitations under initial 
conditions (5.5). 

 

 

                                    a                                                                b 

Fig.7. Free surface elevation without (a) and with (b) longitudinal excitations. 

 The motion of the liquid free surface becomes unstable in the presence of longitudinal excitations. 
This is connected with the essential contribution of the axisymmetric normal mode especially when the 
excitation frequencies are close to the doubled first natural frequency.  

 The installation of baffles can be useful for decreasing the free surface elevation. But changing the 
frequency of forced excitation can produce an undesirable effect consisting in a co-occurence of changed 
excitation frequency with some natural frequencies of the baffled tank. 

 
6. Conclusion 
 
 A method is developed that allows estimation of the level of the free surface elevation in cylindrical 
tanks with and without baffles under longitudinal and lateral loadings. The free, forced and parametric liquid 
vibrations in cylindrical tanks with and without baffles of equal heights and radii are considered. The 
benchmark tests are provided for validation of the obtained results. The effects of the baffle installation and 
their influence on changing the elevation of the free surface are taken into account. The approach renders it 
possible to carry out numerical simulations of forced and parametric liquid sloshing in baffled tanks with 
baffles of different sizes and placed in different positions in the tank. This gives the possibility of governing 
the baffle radius and its position within the tank. It is very topical because practically the baffle effects can 
often be observed only after the baffle installation. The effects of parametric resonances are studied. The 
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areas of unstable and stable liquid motions are obtained using the Ince-Strutt diagram. The proposed method 
makes it possible to determine the necessity of the baffle installation in tanks by using numerical simulation 
and thus to shorten the expensive field experiments. The proposed approach will be easily generalized to 
elastic tanks with elastic baffles. The geometry of tanks can also be changed, easily so the results will be 
obtained for conical, spherical and compound shells with and without baffles. It will allow giving 
recommendations about installation of protective elements (covers, partitions). As for the applicability limits 
of the proposed approach it should be noted that only the ideal incompressible liquid is under consideration, 
and the problems are formulated in linear statements.  
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Nomenclature  
 
 g  acceleration due to gravity 
 H  fluid filling level 
 H1  vertical coordinate of the baffle position 
 n  external unit normal to the wetted surface 
 p  pressure 
 R  radius of circular cylindrical shell 
 (r,, z)  cylindrical co-ordinates 
 S0  liquid free surface  
 S1  wall surface 
 Sbaf  surface of baffles  
 Sbot  bottom surface 
 t  time 
 (x, y, z)  Cartesian co-ordinates 

    fluid velocity potential 
   free surface elevation 
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