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Hydrodynamic forces on a submerged cylinder in uniform finite depth ice-covered water is formulated by
using the method of multipoles, the ice-cover being modelled as an elastic plate of very small thickness. The
forces (vertical and horizontal) are obtained analytically as well as numerically and depicted graphically for
various values of flexural rigidity of the ice-cover to show the effect of its presence. When the flexural rigidity
and surface density of the ice-cover are taken to be zero, then the curves for the forces almost coincide with the
curves for the case of uniform finite depth water with free surface.
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1. Introduction

Havelock [1] considered the problem of radiation and scattering of water waves by spherical object
and solved the heave radiation problem for a half immersed sphere in deep water. Ursell [2] solved the
problem of surface waves on deep water in the presence of a submerged circular cylinder by using the
method of multipoles. This method has been used in various fields of theoretical physics (cf. Jackson [3],
Morse and Feshbach [4]). The water wave scattering problem was investigated by Garrett [S] by determining
the vertical force, horizontal force and torque for a circular dock in water of finite depth. Problems of
radiation and scattering of water waves by a submerged horizontal circular cylinder in finite depth water by
using the method of multipoles were solved by Evans and Linton [6]. The evaluation of hydrodynamic forces
on a submerged circular cylinder in infinite depth water is investigated (cf. Linton and Mclver [7] and Eatock
Taylor and Hu [8]).

Wave interaction with an ice-cover (very large floating structure) is a front line area of research due
to the practical utility in constructing floating offshore oil platforms, floating airports, floating pleasure cities,
etc. The floating structure has elastic properties, and if it is modelled as a thin elastic plate, then the boundary
condition at the floating structure, when linearized, involves fifth order partial derivative of the potential
function describing the irrotational motion in water in contrast to the first order partial derivative in the free
surface condition. This is also the case when the floating ice in an ice-covered ocean is modelled as a thin
elastic floating plate. Wave propagation problems in the presence of a floating elastic plate or floating sheet
of ice have been investigated recently by mathematicians as well as ocean engineers due to a surge or
scientific and ocean- related industrial activities in the polar region. Recently, Sturova [9] also considered the
problem of hydrodynamic loads acting on an oscillating cylinder submerged in a stratified fluid with an ice-
cover. Thakur and Das [10] investigated the wave scattering by a submerged horizontal circular cylinder in
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water with an ice-cover to obtain the vertical and horizontal forces for infinite depth. Li et al. [11] considered
the wave radiation and diffraction by a circular cylinder submerged below an ice-sheet with a crack. They
used the multipole expansion method and the solution was obtained for a fluid of both finite and infinite
depth. Thus we extend the problem of Thakur and Das [10] to examine the scattering by a submerged
circular cylinder in uniform finite depth water with an ice-cover to obtain the hydrodynamic forces. When
the flexural rigidity and surface density of the ice-cover are taken to be zero, so that the ice-cover tends to
a free-surface. Then the curves for forces almost coincide with the curves for the case of water with free
surface.

2. Mathematical formulation

A rectangular Cartesian co-ordinate system is chosen such that y=0 is the undisturbed position of
the ice-cover, y being measured vertically downwards. The central axis of the cylinder with radius « is taken
to be x=0,y=f(f>a). Assuming linear theory, the velocity potential function describing the resulting

motion can be represented by Re{(p(x, y)e_im} , where the time-independent complex valued potential

function @(x,y)satisfies

VZ@=0 in the fluid region, (2.1

the linearized ice-cover condition (cf. Fox and Squire [12])

o
(Dax—4+1—fKJ(py+K(p=0 on y=0. (2.2)

The body boundary condition is

% =0, as r=a. 2.3)
or

The condition on the uniform finite depth #/ is given by

8_(p =0 as y=h. 2.4)
oy

3. Method of solution
Here » and 6 are polar coordinates defined by
x=rsinb, y=f+rcosb(-n<O<m).
The multipoles are (cf. Thorne [13])

gp = S08m0 j:[A, (k)sinhsinhky + B, (k)coshcoshk(h — ) [k"~ cos kxdk, 3.1)

n n
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ot = S0 ["[ 42 (K)sinhsinh ky + B, (k)coshcosh (h = ) k"~ sinkxdlk,

n n
r

_an k(Dk? +1-€eK)+K
T L ) ,
(n=1)'" k(Dk" + 1K )sinhkh - Kcoshk

n 1 e,k(h,f) k(Dk4 +1—-¢€K)
(n—1)! coshkh[k(Dﬂ +I—€K)sinhkh—Kcoshkh}
4
Bz(k):(_])n” S k(Dk +I—€K)+K N
(n-1)! k(Dk4 +1—5K)sinhkh—Kcoshkh
n 1 e,k(h,f) k(Dk4 +1—-¢€K)
(n—1)! coshkh[k(Dﬂ +I—€K)sinhkh—Kcoshkh}

1 et
(n—1)! coshkh

Ay (k)= 45 (k) =

We can expand (3.1) and (3.2) in the form of power series which are

.= cos”ne + ZAmnrm cosm0 ,
m=0
and
sinnd  —w
4 = + > B _r"sinm0,
o5 o mZ:;) ol Sinm
where
11 (® pin
A =3[R () () B () 0tk
11 = m+n—
an :EJJ‘Ok i 1[A2(k)c3(k)+BZ(k)C4(k):|dk ’
where

C],3 (k) =ekf 1(_1)’" €_kf,

oy (k)= ) 2 (—py" ),

Also, the incident wave potential ¢, (x,y)=exp(—Ay +ikx) has the expansion

0y (x,y)= e_ku@(cosne— isinn0)
=~ !

(3.2)

(3.3)

(3.4)

(3.5)
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where A is the unique positive real root of the dispersion equation

k(Dk“ . fK)sinhkh — K cosh kh.

Using the multipoles (3.1) and (3.2) , we may express the potential functions ¢ " (symmetric) and ¢~
(anti-symmetric) as follows

o =™ coshx+ Z:a"ocn(pf1 , (3.6)
n=1

¢~ =ie ™ sinkx+ > a"B,0h (3.7)
n=1

where, the functions @, are symmetric multipoles and ¢, are anti-symmetric multipoles respectively, o,
and P, are unknown complex constants. Now, using Eq.(2.3) in Eqs (3.6) and (3.7) we get

0 _7\1 m
o, = a"" 4,0, =e_M(—a'), m=1,2,3,....... (3.8)
oy m!
0 ) _7\‘ m
B,—>a""B,,p,=ie"’ % , m=123,...... , (3.9)
.y m:

Here Eqs(3.8) and (3.9) are truncated upto five terms. The vertical exciting force is given by
T
X, =pgd ja(pfl (a,0)cos6d0
—T

where A is the amplitude. Using the orthogonality condition of the trigonometric function and from Eqs(3.6)
and (3.8), we have

Xy =2npgAaa,;. (3.10)

Similarly, the horizontal force is

T
X, =pgd .[G(PZ (a,8)sin646,
—T

and by using Eqs (3.7) and (3.9), we get

X, =2npgAaf; . 3.11)
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4. Numerical results

Curves for the vertical forces X}, are shown in Figs 1 to 3.

Figures 1-3 show X, (symmetric mode) and Figs 4-6 for X, (anti-symmetric mode) plotted
against Ka for different values of f'/a, Viz. f/a =1.5,1.2, 1.05 and different values of D/ a’. F igure 1

was made for vertical forces and the following values of ratios D/ a’= 0,e¢/a=0. Here we observed that
the curves almost coincide with the curves for the case of water with free surface.
Figure 2 was plotted for D/a*= 1,e/a=0.01,hla=3, Fig3 for f/a=15,¢/a=0.0l,h/a=4

and different values of D/a”.It is observed that vertical forces first increase as Ka increases; each attains a
maximum value and then decrease as Ka farther increases for all cases. Here vertical forces gradually
decrease as increases of Ka. Also we noticed that due to the presence ofice-cover, the non-
dimensional vertical forces get reduced.

Curves for the horizontal forces |X h| are shown in Figs 4-6 for uniform finite depth water. All the
curves are somewhat similar to those for the vertical forces on the cylinder and display the same

characteristics (Figs 4, 5, 6 are similar to Figs 1, 2, 3 respectively). Also, it is observed that the horizontal
forces are smaller in comparison to the vertical forces on the cylinder.
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25F S N 2 .
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Fig.1. Vertical forces against the wave number ka.
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Fig.2. Vertical forces against the wave number ka.
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Fig.3. Vertical forces against the wave number ka.
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Fig.5. Horizontal forces against the wave number ka.
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Fig.6. Horizontal forces against the wave number ka.

Due to the presence of the ice-cover, the vertical and horizontal forces are oscillatory in nature and
tend ultimately to zero for large Ka .

5. Conclusion

The problem of hydrodynamic forces on the submerged circular cylinder in uniform finite depth
water beneath the free surface is extended here when the free surface is replaced by a thin ice cover modelled
as a thin elastic plate. Numerical results for the vertical and horizontal forces on the cylinder are obtained. It
has been shown that the method of multipoles is an extremely powerful method for solving this problem
involving submerged circular cylinder. The vertical and horizontal forces on the cylinder are depicted
graphically against the wave number in a number of figures. When D/a*=0and ¢/a=0, the forces

coincide with the curves for the case of water with free surface.
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Nomenclature
— amplitude
— radius of the circular cross-section of the cylinder

A

a

E — Young’s modulus

f — depth of the centre of cylinder from the ice-cover surface
g

— gravity
hy — small thickness of the ice-cover
¢ — complex valued velocity potential function
o — angular frequency
¢, — incident wave potential

A

— wave number
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¢" — symmetric potential function

¢ — anti-symmetric potential function
v — Poisson’s ratio
p — density of water

pg — density of ice
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