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Hydrodynamic forces on a submerged cylinder in uniform finite depth ice-covered water is formulated by 

using the method of multipoles, the ice-cover being modelled as an elastic plate of very small thickness. The 
forces (vertical and horizontal) are obtained analytically as well as numerically and depicted graphically for 
various values of flexural rigidity of the ice-cover to show the effect of its presence. When the flexural rigidity 
and surface density of the ice-cover are taken to be zero, then the curves for the forces almost coincide with the 
curves for the case of uniform finite depth water with free surface. 
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1. Introduction 
 
Havelock [1] considered the problem of radiation and scattering of water waves by spherical object 

and solved the heave radiation problem for a half immersed sphere in deep water. Ursell [2] solved the 
problem of surface waves on deep water in the presence of a submerged circular cylinder by using the 
method of multipoles. This method has been used in various fields of theoretical physics (cf. Jackson [3], 
Morse and Feshbach [4]). The water wave scattering problem was investigated by Garrett [5] by determining 
the vertical force, horizontal force and torque for a circular dock in water of finite depth. Problems of 
radiation and scattering of water waves by a submerged horizontal circular cylinder in finite depth water by 
using the method of multipoles were solved by Evans and Linton [6]. The evaluation of hydrodynamic forces 
on a submerged circular cylinder in infinite depth water is investigated (cf. Linton and McIver [7] and Eatock 
Taylor and Hu [8]). 

Wave interaction with an ice-cover (very large floating structure) is a front line area of research due 
to the practical utility in constructing floating offshore oil platforms, floating airports, floating pleasure cities, 
etc. The floating structure has elastic properties, and if it is modelled as a thin elastic plate, then the boundary 
condition at the floating structure, when linearized, involves fifth order partial derivative of the potential 
function describing the irrotational motion in water in contrast to the first order partial derivative in the free 
surface condition. This is also the case when the floating ice in an ice-covered ocean is modelled as a thin 
elastic floating plate. Wave propagation problems in the presence of a floating elastic plate or floating sheet 
of ice have been investigated recently by mathematicians as well as ocean engineers due to a surge or 
scientific and ocean- related industrial activities in the polar region. Recently, Sturova [9] also considered the 
problem of hydrodynamic loads acting on an oscillating cylinder submerged in a stratified fluid with an ice-
cover. Thakur and Das [10] investigated the wave scattering by a submerged horizontal circular cylinder in 

                                                            
* To whom correspondence should be addressed 



220  M.Sahu and D.Das 

water with an ice-cover to obtain the vertical and horizontal forces for infinite depth. Li et al. [11] considered 
the wave radiation and diffraction by a circular cylinder submerged below an ice-sheet with a crack. They 
used the multipole expansion method and the solution was obtained for a fluid of both finite and infinite 
depth. Thus we extend the problem of Thakur and Das [10] to examine the scattering by a submerged 
circular cylinder in uniform finite depth water with an ice-cover to obtain the hydrodynamic forces. When 
the flexural rigidity and surface density of the ice-cover are taken to be zero, so that the ice-cover tends to 
a free-surface. Then the curves for forces almost coincide with the curves for the case of water with free 
surface. 

 
2. Mathematical formulation 

 
A rectangular Cartesian co-ordinate system is chosen such that  y 0  is the undisturbed position of 

the ice-cover , y  being measured vertically downwards. The central axis of the cylinder with radius a is taken 

to be   ,   (   ). x 0 y f f a   Assuming linear theory, the velocity potential function describing the resulting 

motion can be represented by   Re ,  ,i tx y e   where the time-independent complex valued potential 

function  , x y satisfies 

 

                            2 0  in the fluid region,                                                                                       (2.1)  
 
the linearized ice-cover condition (cf. Fox and Squire [12]) 
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 The body boundary condition is 
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The condition on the uniform finite depth h  is given by 
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3. Method of solution 

 
 Here r  and   are polar coordinates defined by 

 

     sin ,  cos    .x r y f r         

 
The multipoles are (cf. Thorne [13]) 
 

   cos
sinhsinh coshcosh ( ) cos ,s n 1

n 1 1n 0

n
A k ky B k k h y k kxdk

r

 
                      (3.1)   

 



Hydrodynamic forces on a submerged horizontal ...  221 

     sin
sinhsinh coshcosh ( ) sin ,a n 1

n 2 2n 0

n
A k ky B k k h y k kxdk

r

 
               (3.2)   

  

   
 

 

   
( )

( )

! sinh cosh

( )
,

! cosh sinh cosh

4n
kf

1 4

4
k h f

4

k Dk 1 K K1
B k e

n 1 k Dk 1 K kh K kh

1 k Dk 1 K
e

n 1 kh k Dk 1 K kh K kh



 

  
 

   

 


     









             

       

  

   
 

 

   
( )

( )

! sinh cosh

( )
,

! cosh sinh cosh

4n 1
kf

2 4

4
k h f

4

k Dk 1 K K1
B k e

n 1 k Dk 1 K kh K kh

1 k Dk 1 K
e

n 1 kh k Dk 1 K kh K kh




 

  
 

   

 


     









                             . 

  

  
     

 

! cosh

k h f

1 2
1 e

A k A k
n 1 kh

 

 


. 

 
 We can expand (3.1) and (3.2) in the form of power series which are 
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Also, the incident wave potential    , exp0 x y y i x      has the expansion  
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where    is the unique positive real root of the dispersion equation 
 

 sinh cosh .4k Dk 1 K kh K kh     

 Using the multipoles (3.1) and (3.2) , we may express the potential functions  (symmetric) and 
(anti-symmetric) as follows 
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where, the functions s
n   are symmetric multipoles and a

n  are anti-symmetric multipoles respectively, n  

and n  are unknown complex constants. Now, using Eq.(2.3) in Eqs (3.6) and (3.7) we get  
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Here Eqs(3.8) and (3.9) are truncated upto five terms. The vertical exciting force is given by 
 

   , cos  s
V nX gA a a d





       

 
where A is the amplitude. Using the orthogonality condition of the trigonometric function and from Eqs(3.6) 
and (3.8), we have  
 

  V 1X 2 gAa   . (3.10) 
 
Similarly, the horizontal force is 
 

   , sin  ,a
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and by using Eqs (3.7) and (3.9), we get 
 

  h 1X 2 gAa    .                       (3.11) 
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  − symmetric potential function 

 
  − anti-symmetric potential function 

   − Poisson’s ratio 

   − density of water 

 0  − density of ice 
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