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The problem considered in this paper is the derivation of properties of edge waves travelling along a 
submerged horizontal shelf. The problem is formulated within the framework of the linearized theory of water 
waves and Havelock expansions of water wave potentials are used in the mathematical analysis to obtain the 
dispersion relation for edge waves in terms of an integral. Appropriate multi-term Galerkin approximations 
involving ultra spherical Gegenbauer polynomials are utilized to obtain a very accurate numerical estimate for the 
integral and hence to derive the properties of edge waves over a shelf. The numerical results are illustrated in a 
table and curves are presented showing the variation of frequency of the edge waves with the width of the shelf.  
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1. Introduction 
 
 Edge wave solutions to the linearized theory of water waves are well known in the literature for a 
variety of bottom topographies. The only explicit solution exists for edge waves over a uniform sloping 
beach (cf. Stokes [1], Ursell [2], Jones [3], Roseau [4], Grimshaw [5]). The shallow water dispersion relation 
for edge wave modes over a shelf was extensively studied by Snodgrass et al. [6], Summerfield [7] and 
Longuet-Higgins [8] and it can be shown that for a fixed geometry, the number of modes increases 
indefinitely with the increase of wave numbers. The full linearized theory was utilized by Evans and McIver 
[9] to derive the properties of edge waves over a shelf.  

In this paper we derive the properties of edge waves travelling along a submerged horizontal shelf 
bounded on one side by a vertical wall extending through the free surface and on the other by a vertical drop 
from the shelf to a deeper region of constant water depth extending horizontally indefinitely. The problem is 
formulated within the framework of the linearized theory of water waves and Havelock expansions of water 
wave potentials are used in the mathematical analysis to obtain the dispersion relation for edge waves in 
terms of an integral. Appropriate multi-term Galerkin approximations involving ultra spherical Gegenbauer 
polynomials are utilized to obtain a very accurate numerical estimate for the integral and hence to derive the 
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properties of edge waves over a shelf. The numerical results are illustrated in a table and curves are presented 
showing the variation of frequency of the edge waves with the width of the shelf.  
 
2. Formulation of the problem 
  
 We consider the motion in an inviscid, homogeneous, incompressible liquid which is supposed 
confined in the horizontal shelf. Cartesian axes are chosen with the mean free surface the (x, z) plane, z being 
directed along the straight coastline and y vertically downwards. The shallower water is of finite depth h1 
above the horizontal shelf of width a; the deeper water is of depth h21. A simple sketch of the problem is 
given in Fig.1.  
 

 
 

Fig.1. Geometry of the problem. 
 

 Assuming the linearized theory of water waves, the edge waves travelling along a submerged 

horizontal shelf can be described by the velocity potential Re   , exp( )x y i z i t    , where   being the 

wave number in the z direction,   being the frequency of the edge waves, then   satisfies 
 

    in the fluid region2 2 0    , (2.1) 
 
the free surface condition  
 

    on K 0 y 0
y


  


, (2.2) 

 

with  2K g   g being the gravity, the bottom conditions  
 

  
 
  on  ,  and , 1 20 y h 0 x a y h x a

y


     


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the conditions on the vertical walls 
 

  
 
  on ,  and  , 1 1 20 x 0 0 y h x a h y h

x
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the edge condition  
 

  /  is bounded as ,  ( ) ( )1 3 2 2
1r r 0 r x a y h      , (2.5) 

 
r is the distance from the edge. 
 Our aim will be to find a dispersion relation between the wave frequency   and the wave number 
such that non-trivial solutions to the above equations exist. 
 
3. Method of solution 
 
 Since    ,  and ,x x y x y   are continuity across (a, 0) to (a, h1), we can write  

 

    , say, for ,1
x a x a

f y 0 y h
x x   

              
  (3.1) 

 
       fo .r 1x a x a

0 y h          (3.2) 

  
 A solution for  ,x y  satisfying (2.1), (2.2), (2.3) can be represented as  
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where , , 2 2 2 2 2 2 2 2 2
0 0 n n n nt k s k p          , ,0 0s it  0k  satisfies tanh , 0 0 1 nk k h K k  satisfies 

tan , n n 1 nk k h K 0    satisfies tann n 2h K 0    . 
 Using Eqs (3.3) in Eqs (3.1) and (3.2), we find 
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and 
 

  

   

 

cos cosh cot

cos cot
, < .

h
 

n 2 0 1 0
n 0

n 00

n 1 n
n 1

n1

h y k h y t a
A B

p t

k h y s a
B 0 y h

s





  
  


 




  (3.5) 

 
Use of Havelock’s [10] inversion theorem in Eq.(3.4) produces 
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 Using Eqs (3.6), (3.7), (3.8) in Eq.(3.5), we find 
 

      , cosh ( ),  
1h
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 It may be noted that the function F(y) and the constant A are real. The integral Eq.(3.9) is to be 
solved by (N+1) multi-term Galerkin approximations of F(y) in terms of ultraspherical Gegenbauer 

polynomials  / /1 6
2n 1C y h  by noting the behavior of   /~ ( ) 1 3

1F y h y   as  1y h 0   given by (cf. Dolai 

[11]) 
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where  
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 The unknown coefficients na  ( , , , , )n 0 1 2 N   are obtained by solving the system of linear 
equations 
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 Once na  ( , , , , )n 0 1 2 N   are solved, the real constant A can be determined from Eq.(3.10)  
 

   
N

n n
n 0

A A a d


  . (3.14) 

 
 Thus, from Eqs (3.11) and (3.14), we find the dispersion relation  

 

    tan  
sinh
0

0 0
0 1 0 1

Ak
t t a

2k h 2k h



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.                                                                                          (3.15) 

 
The edge waves will exist if we can find solution of the dispersion relation (3.15). 
 
4. Numerical results 
 
 For existence of edge waves, we solve the dispersion relation (3.15) numerically. To find the 

numerical solutions of the dispersion relation (3.15), we have to find the numerical estimate of A  in (3.14). 

Multi-term Galerkin approximations are used to obtain the numerical estimate for A . In the numerical 

computations, we take at most six terms to produce ac fairly accurate numerical estimate for A . 

 We display a representative set of numerical estimates for A  in Tab.1, taking N=0, 1, 2, 3, 4 and 5 in 
the (N+1)- term Galerkin approximations and some particular values of the different parameters. 
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It is observed from Tab.1 that the computed results for A  converge very rapidly with N, and for 
N 3  an accuracy of almost six decimal places is observed. It appears that the present method of numerical 

procedure for the numerical computations of A  is quite efficient.  
 

Table 1. The computed results for A . 
 

. , .2 20 2 aK hh 0 1   

 ./1 2h 0 1h   ./1 2h 0 3h   ./1 2h 0 5h   ./1 2h 0 7h   ./1 2h 0 9h   

N A A A A A
0 0.641850 0.848978 0.833867 0.658619 0.358839 
1 0.642881 0.852798 0.843405 0.670918 0.365843 
2 0.642889 0.852798 0.843406 0.670929 0.365915 
3 0.642888 0.852799 0.843406 0.670929 0.365917 
4 0.642888 0.852799 0.843406 0.670929 0.365917 
5 0.642888 0.852799 0.843406 0.670929 0.365917 

. , .2 20 2 aK hh 0 3   

 ./1 2h 0 1h   ./1 2h 0 3h   ./1 2h 0 5h   ./1 2h 0 7h   ./1 2h 0 9h   

N A A A A A
0 0.641882 0.852981 0.844097 0.668763 0.362793 
1 0.642899 0.854827 0.847021 0.672847 0.366022 
2 0.642907 0.854852 0.847053 0.672886 0.366084 
3 0.642908 0.854853 0.847056 0.672890 0.366088 
4 0.642908 0.854853 0.847056 0.672890 0.366089 
5 0.642908 0.854853 0.847056 0.672890 0.366089 

 
The numerical solutions of the dispersion relation (3.15) produce the edge wave frequency t0h2 and 

are plotted against the shelf width / 2a h  in Figs 2 and 3 for some particular values of the other parameters. It 

is observed that as / 2a h 0 , the edge wave frequencies are quite large and as / 2a h  increases the edge 
wave frequencies decrease and ultimately tend to zero. These types of observations are quite expected. 

 

 
 

Fig.2. Frequency of edge waves for . , .12 20 2 hK hh 0 1  . 
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Fig.3. Frequency of edge waves for . , .12 20 2 hK hh 0 5  . 

 
5. Conclusion 
 

The existence of edge waves travelling along a submerged horizontal shelf is investigated in this 
paper. The method of multi-term Galerkin approximations in terms of ultra spherical Gegenbauer 
polynomials has been utilized to obtain very accurate numerical estimates for the integral involved in the 
dispersion relation of the problem considered here. By choosing only five terms in the Galerkin 
approximations, we achieve almost six figure accuracy in the numerical estimates of the integral. The 
numerical results are illustrated in a table and curves are presented showing the variation of frequency of the 
edge waves with the width of the shelf. Some expected known results are achieved. 
 
Nomenclature 
 
 g    gravity 

 ,1 2h h    depth of the shallow water 

 ,K     wave number 

 t   time 
 x   horizontal distance 
 y   vertical distance 
     wave frequency 
     velocity potential 
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