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In this paper, the dispersion of a solute in the peristaltic propulsion of an incompressible and viscous fluid 
through a permeable medium under the influence of wall properties with simultaneous homogeneous, 
heterogeneous chemical reactions in an inclined uniform channel has been studied. The issue is studied through 
conditions of Taylor’s limit and long wavelength hypothesis. The mean effective coefficient of scattering 
expression is computed and outcomes are interpreted physically through graphs.  
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1. Introduction 
 
 "Peristaltikos" is a Greek word which implies clasping and compressing, from which the word 
'peristaltic' is derived. Peristalsis is a coordinated response wherein a wave of contraction preceded by a 
wave of relaxation passes down a hollow viscus. Thus 'peristalsis' is the rhythmic sequence of smooth 
muscle contractions that progressively squeeze one small section of the tract and then the next to push the 
content along the tract. As they are propelled along, they would always enter a segment which had actively 
relaxed and enlarged to receive them. From the perspective of fluid dynamics, peristalsis is typified by the 
dynamical interface of the fluid flow and movement of the flexible boundaries of the conduit. This technique 
is also applied in several biomedical strategies; e.g., finger and roller thrusts. In view of its significance, 
numerous specialists have inspected the creeping sinusoidal flow of diverse fluids under many conditions [1-
6]. In physiological structures, it is known that all vessels are not straight but have some inclination with the 
axis. The gravitational strength is accounted for due to the consideration of an inclined channel. A few 
scholars have studied the peristaltic stream of Newtonian and non-Newtonian liquids in an inclined conduit 
with various conditions [7-9]. After this study, some investigators have studied the wall effects on different 
fluids with peristalsis [10-17].  
 Dispersion is the process by which a material is transported from one portion of a system to another 
as a result of random molecular motion. Taylor [18] explored the incompressible and viscous laminar stream 
of a liquid in a round tube with a scattering of a solute material. Aris [19], Padma-Rao [20], Gupta and Gupta 
[21], Sobh [22], Chandra-Philip [23], and Dutta et al. [24] considered the scattering of a solute material in a 
viscous liquid under distinct situations. These studies have been extended to non-Newtonian liquids by many 
experts [25-27].  
 A porous medium is formed by lots of relatively thoroughly packed particles or solid matrix with its 
void filled with liquids. A porous medium is a material containing pores or spaces in between the solid 
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matter through which gas or liquid can pass. The bile duct, gall bladder with stones and human lungs, 
limestone, beach sand, sandstone, are some of the examples of natural porous media. Moreover, movements 
of underground water, liquid filtration and water discharge in river beds are examples of flow through a 
permeable medium. The study of flow in permeable media has a vital role in understanding the transportation 
process in kidneys, gallbladder with stones and lungs. Most of the tissues in the body are deformable 
permeable media. The appropriate functioning of the tissues depends on the stream of blood, nutrients and 
other substances.  
 Peristalsis, permeability, and diffusion are most essential characteristics in bio-medical, natural and 
chemical processes. Existing information on the topic shows that an analytical treatment of creeping 
sinusoidal flow and dispersion of an incompressible and viscous liquid in an inclined channel through a 
permeable medium with chemical reactions and wall features has been never reported. Motivated by this 
fact, we have investigated the chemical and wall feature effects on the creeping sinusoidal stream and 
dispersion in an incompressible and viscous fluid flow through a permeable medium in an inclined channel. 
Blood vessels are part of the circulatory system, through which nutrients, blood, hormones, and other 
important substances easily pass (Lightfoot [29]). The core outcomes are investigated for different values of 
penetrating constraints through graphs and presented in the conclusions.  
 
2. Mathematical model 
 
 Consider the peristaltic stream of an incompressible and viscous liquid in an inclined porous channel. 
Figure 1 shows the wave shape of the peristaltic wave.  
 

 
Fig.1. Geometry of the model. 

 
 The wave shape is assumed as 
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where a  is the amplitude, λ is the wavelength of the wave, and d  is the half width of the channel. 
 The equivalent stream equations (Gupta-Seshadri [28]) of the current issue are 
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where   is the velocity component in the x -direction, v  is the velocity component in the y -direction,   is 

the density of the fluid, g  is the gravity due to acceleration,   is the angle of inclination, p  is the pressure, 

 k is the permeable constraint and   is the viscosity coefficient. 
 The condition of the flexible wall movement (Mittra-Prasad [10]) is specified as 
 
   0p p L   ,                                                                                        (2.5)    

                                                                                                             
where L  is the movement of the stretched membrane by the damping force and is given by the subsequent 
equation 
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 Here, m  is mass per unit area, T  is the membrane tension, and C  is the coefficient of viscous 
damping force.   
 Following Alemayehu-Radhakrishnamacharya [25] and using the long wavelength hypothesis, Eqs 
(2.2) to (2.4) yield 
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 The associated periphery clauses are specified as 
 
   ,       at    .0 y   h                                                                          (2.10) 
 
 It is assumed that  0p 0  and the channel walls are inextensible; hence, the horizontal displacement 
of the wall is zero and simply lateral movement takes place. 
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 From Eqs (2.8) – (2.11), we get 
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 The mean speed is specified as 
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 Utilizing [25], the fluid speed is specified as 
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2.1. Diffusion with simultaneous homogeneous and heterogeneous chemical reactions 
 
 Following Taylor [18] and Gupta-Gupta [21], the diffusing equation for the concentration   of the 
substance for the present issue under isothermal conditions is 
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 Here   is the concentration of the fluid, D  is the diffusion coefficient for chemical responses, and 
  1k  is the rate constant of a chemical response.     

 For the standard estimations of physiologically basic parameters of this issue, it is typical that    
([25]). 

 Utilizing      of [25], and consequent dimensionless quantities 
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Equations (2.12), (2.15) and (2.16) yield 
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amplitude ratio. 
 The scattering with first-order irreversible chemical response taking place in the mass of the fluid 
medium and at the walls of the channel and walls are catalytic to the chemical response. 
 Hence, the boundary conditions at the walls (Chandra-Philip [23]) are given as 
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 From Eqs (2.17), (2.21) and (2.22), we get 
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where d    is the heterogeneous response rate compared to the catalytic response at the wall. 
 From Eqs (2.23) and (2.24), the solution of Eq.(2.22) it follows 
 

             cosh   cosh    cosh
4

4 5 6 72

d C
A T T T T

D


           




 ,                   (2.25) 

 

where         1k
d

D
  ,           '   

1
d

k
   . 

 
 The volumetric rate Q is described as the rate in which the solute is pumped across a section of the 
channel for each unit breadth.  
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 Using Eqs (2.19) and (2.25) in Eq (2.26), we obtain 
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 Looking at Eq.(2.28) with Fick’s law of dispersion, the scattering coefficient *D  was computed such 
that the solute diffuses relatively to the plane moving with the typical speed of the stream and is specified as 
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 Let G  be the mean of G , and is attained by the following equation 
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3. Results and discussion  
 
 The mean effective scattering coefficient is observed throughout the function    G  for simultaneous 
homogeneous, heterogeneous chemical reactions given by Eq.(2.30). Computational results have been 
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generated by using the MATHEMATICA software and the end results are presented through graphs. It 
should be taken car that 1E , 2E , and 3E  cannot be zero altogether.  
 

   
 
Fig.2. Illustration of G  for k with ε = 0.2, 

α = 1.0, γ = 6.0,   ,6
   1E = 0.1,  

        2E = 0.0, 3E = 0.06. 
 

 
 
Fig.3. Illustration of G  for k with ε = 0.2, 

β = 5.0, γ = 6.0,   ,6
   1E = 0.1,  

         2E = 4.0, 3E = 0.06. 

 
 
Fig.4. Illustration of G  for k with β = 5.0, 

α = 1.0, γ = 6.0,  ,6
   1E =0.1, 

         2E =4.0, 3E =0.0. 

 
 
Fig.5. Illustration of G  for   with ε = 0.2, 

α = 1.0, k = 0.9, γ = 6.0, 1E =0.1,  

          2E =0.0, 3E =0.06. 

  

 
 
Fig.6. Illustration of G  for   with ε = 0.2, 

β = 5.0, k = 0.9, γ = 6.0, 1E = 0.1,  

        2E = 0.0, 3E = 0.06. 

 
 
Fig.7. Illustration of G  for   with α = 1.0, 

β = 5.0, k = 0.9, γ = 6.0, 1E = 0.1, 

          2E = 0.0, 3E = 0.06. 
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Fig.8. Illustration of G  for E 1 with ε = 0.2, 

α = 1.0, k = 0.9, γ = 6.0, / ,6     
        2E = 0.0, 3E = 0.00. 

 
 
Fig.9. Illustration of G  for E 1 with ε = 0.2, 

β = 5.0, k = 0.9, γ = 6.0, / ,6     
          2E = 0.0, 3E = 0.06. 
 

 
 
Fig.10. Illustration of G  for E1 with α = 1.0, 

β = 5.0, k = 0.9, γ = 6.0,   ,6
   

2E = 4.0, 3E = 0.00. 
 

 
 
Fig.11. Illustration of G  for E 2 with ε = 0.2, 

α =1.0, k =0.9, γ =6.0, ,  6
  1E =0.1, 

3E = 0.00. 

 
 
Fig.12. Illustration of G  for E 2 with ε = 0.2, 

β = 5.0, k = 0.9, γ = 6.0,    ,6
    

           1E = 0.1, 3E = 0.06. 

 
 
Fig.13. Illustration of G  for E 2 with β = 5.0, 

α = 1.0, k = 0.9, γ = 6.0,   ,
6


 

 
 1E = 0.1, 3E = 0.06. 
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Fig.14. Illustration of G  for E 3 with ε = 0.2, 

α=1.0, k = 0.9, γ =6.0, ,   6
  1E =0.1, 

2E = 4.0. 
 

 
 
Fig.15. Illustration of G  for E 3 with ε = 0.2, 

β = 5.0, k = 0.9, γ =6.0, ,   6
  1E =0.1, 

2E = 4.0. 

 
 

Fig.16. Illustration of G  for E 3 with β = 5, α = 1.0, k = 0.9, γ = 6.0,   ,6
   1E = 0.1, 2E = 4.0. 

 
 It is observed from Figs 2-4 that   G  rises with an increase in the permeability constraint ( )k . It is 

also observed from Figs 5-7 that G  grows as an angle of proclivity ( )  increases. These effects are in 
agreement with the results of Sankad-Radhakrishnamacharya [13]. 
 From Figs 8-16, it follows that G  grows with a rise in the rigidity constraint of the wall ( 1E ) 

toughness of the wall ( 2E ) and viscous damping force of the wall ( 3E ). This result is concurrent with the 

result of Hayat et al. [26], Ravikiran-Radhakrishnamacharya [27]. Furthermore, G  ascends with an 
increment in the amplitude ratio (ε) (Figs 4, 7, 10, 13, and 16). This result is in agreement with that of Sobh 
[22] and Alemayehu-Radhakrishnamacharya [25]. 
  It is seen that  G  descends with an increase in the homogeneous chemical response rate (α) (Figs 3, 
6, 9, 12, and 15) and heterogeneous chemical response rate (β) (Figs 2, 5, 8, 11, and 14). This result is 
common since a growth in α stimulates expansion in the sum of moles of solute experiences chemical 
response. These results agree with the arguments of Padma-Rao [20] and Hayat et al. [26].  
 
4. Conclusions 
 
 The present study investigated the effect of chemical responses and wall properties on an 
incompressible and viscous fluid with creeping sinusoidal flow. The key results of this article are given 
below. 
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1. A similar behavior is observed for the permeability constraint (k), amplitude ratio ( )  and angle of 

proclivity  ( )  on the concentration profile.   

2. An identical effect on the concentration profile is noticed for wall constraints ( 1E , 2E , 3E ).  
3. An opposite behavior of homogeneous response rate constraint (α) and heterogeneous response rate 

constraint (β) are observed on the concentration profile.   
4. Similar behavior noted for amplitude ratio (ε) on dispersion coefficient. 
5. The permeability constraint (k), amplitude ratio ( ) angle of proclivity ( )  and wall constraints ( 1E , 

2E , 3E ) support the dispersion but the homogeneous chemical response rate (α) and the 
heterogeneous chemical response rate (β) resist the dispersion. 
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Nomenclature 
 
 a  amplitude of the wave 
 C  viscous damping force coefficient 
    concentration of the substance 
 c  velocity of the peristaltic wave 
 D  diffusion coefficient of the chemical reaction 
 D*  equivalent dispersion coefficient 
 d  half width of the channel 
 1   rigidity of  the wall 

 2   stiffness of  the wall 

 3   viscous damping force of the wall 

 G  coefficient of scattering 
  G    average effective coefficient of scattering 
 g  acceleration due to gravity 
  k    permeability constraint 
 k1  rate of chemical response 
 m  mass per unit area 
 L  motion of the stretched membrane 
 p  pressure on the wall 
 Q  volume flow rate 
 T  tension in the membrane 
 t  time 
 ,  v   velocity components in ,  x y  direction 

   homogeneous response rate constraint 
   heterogeneous response rate constraint 
    gravitational constraint 

 ε  amplitude ratio 
   angle of inclination of the channel 
    wavelength of the peristaltic wave 
    coefficient of viscosity 

    density of the fluid 
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