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Thermal convection of a rotating dielectric micropolar fluid layer under the action of an electric field and 
temperature gradient has been investigated. The dispersion relation has been derived using normal mode analysis. 
The effects of the electric Rayleigh number, micropolar viscosity, Taylor number and Prandtl number on stability 
and over stability criteria are discussed. It is found that rotation postpones the instability in the fluid layer, while 
the Prandtl number and rotation both have a stabilizing effect. It is also observed that the micropolar fluid 
additives have a stabilizing effect, whereas the electric field has a destabilizing effect on the onset of convection 
stability. 
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1. Introduction 
 
 Electro-hydrodynamics (EHD) is concerned with the mechanics involved in the fluid motion under 
the effect of an electric field. Electro-hydrodynamics(EHD) has wide range of applications in several areas 
including engineering, bio-technology, telecommunication, aerospace engineering, etc. For example, EHD 
enhanced heat transfer may be used in nano-fluids, EHD may be used for the cooling process in mechanical 
systems, EHD pumps are used to enhance the motion of ions in the fluids. 
     The theory of electro-dynamics of continuous media and the expression of electric force in fluid 
dielectric has been presented in Landau and Lifshitz [1]. Later, the convection problem in EHD was studied 
by Roberts [2]. Here, the fluid layer is generally considered under the action of AC or DC current and the 
main objective is to find the effect of the electric Rayleigh number on the stability and over stability of fluid 
system. Of course, the fluid layer considered in the system should be electrically conductive. Melcher and 
Taylor [3] analyzed the convection in a liquid layer in the presence of  an AC or DC electric field and he 
later proposed the leaky dielectric model. In order to understand possible control of convection in liquid 
dielectrics and a control of heat and mass transfer in high-voltage devices by electric field, several studies 
have been carried out to assess the effect of AC or DC electric field on free convection in a horizontal 
dielectric fluid layer. Some of the related theories are given by Gelmont and Loffe [4], Gross and Porter [5], 
Takashima and Aldridge [6] among several others. Detailed explanations of thermal convection problems in 
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a thin horizontal layer of a Newtonian fluid heated from below under varying assumptions of hydro-magnetic 
and hydro-dynamics can be found in the monograph by Chandrasekhar [7].   
      Eringen [8] introduced the theory of microfluids and defined a subclass of these fluids called 
micropolar fluids. Micropolar fluids consist of rigid randomly oriented fluid filaments suspended in a viscous 
medium, where the deformation of filament is ignored. Industrial colloidal fluids, liquid crystals and animal 
blood are few examples of micropolar fluids.Compared to classical Newtonian fluids, micropolar fluids 
are characterizedby two variables, i.e., spin vector (micro-rotation vector) responsible for the micro-
rotations and micro- inertia tensor (gyration parameter) describing the distributions of atoms or 
molecules inside the fluid element in addition to the velocity vector. The micropolar theory of fluids is 
extended by Eringen [9] to include the heat conduction and heat dissipation effects. The instability of a 
fluid layer heated from below or above produces a fixed temperature difference and is known as 
Rayleigh-Benard convection problem in the literature. Linear and non-linear instability problems of 
micropolar fluids have been investigated by Perez-Garcia and her co-workers [10, 11], Ahmadi [12], Datta 
and Sastry [13], Rama Rao [14, 15], Sharma and Gupta [16], Sharma and Kumar [17, 18], Rana et al. [19], 
Sharma and Gupta [20], Rani and Tomar [21] among several others. The effect of a vertical AC electric 
field on the onset of convective instability in a dielectric micropolar fluid layer heated from below 
under a simultaneous action ofrotation of the system and the vertical temperature gradient has been 
studied by Ezzat and Othman [22]. They used the power series method to obtain the dispersion 
equation and solved them numerically for stability motion of the system. It should be noted that 
they could not perform an analysis for over-stability motions. Recently, Rani and Tomar [23] have 
studied EHD convection in dielectric micropolar fluidlayer. 
 The effect of rotation on the thermal convection in micropolar fluids is important in certain chemical 
engineering and biochemical situations. Qin and Kaloni [24] studied a thermal instability problem in a 
rotating micropolar fluid. The effect of rotation on thermal convection in micropolar fluids in a porous 
medium has been analysed by Sharma and Kumar [25]. Othman and Zaki [26] studied the effect of a vertical 
magnetic field on the onset of convective instability in a conducting micropolar fluid (Oldroyd fluid) layer 
heated from below confined between two horizontal planes under the simultaneous action of  rotation of the 
system and the vertical temperature gradient. Shivkumara et al. [27] studied EHD instability of a rotating 
couple stress dielectric fluid layer. 
      In the present paper, we have studied electro-hydrodynamic convection in a rotating dielectric 
micropolar fluid layer using the normal mode analysis method. The normal mode analysis method has 
superiority over the power series method in the sense that it can give complete information about the 
instability of a system including the growth rate of any unstable perturbation. The proposed study may help 
in understanding the stability characteristics of the system and provide theoretical results for the control of 
unstable convection occurring in many micro fluid devices. It is found that micropolar viscosity and rotation 
parameter has a stabilizing effect on the onset of convection, while the electric Rayleigh number has a 
destabilizing effect on the system. The thermal Rayleigh number is found to be independent of the Prandtl 
number in case of stability motion. 
 
2. Mathematical formulation 
 
 Consider a horizontal layer of an incompressible dielectric micropolar fluid of uniform thickness 'd'. 
Let the fluid layer be rotating about the vertical axis with constant angular velocity Ω under the gravitational 
field. With reference to the rectangular Cartesian coordinate system OXYZ, we take the z-axis normal to the 
fluid layer such that z = 0 and z = d defines the lower and upper surfaces of the layer, which are maintained 
at constant temperature TL and TU(< TL) respectively. We shall assume that rotation of the system will not 
affect the isotropy of the micropolar fluid. 
 Under the Boussinesq approximation, the mass, momentum, internal angular momentum, internal 
energy balance equations in the absence of body load and body couple densities (see Eringen [8]) and 
relevant Maxwell equations (see Landau and Liftshitz [1]) are given by 
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 In the expression of electric force, the first term corresponds to the ‘Coulomb force’, the second term 
corresponds to the ‘electrophoretic force’ and the last term corresponds to the ‘electrostrictive force’. The 
Coulomb force is very poor in comparison to the electrophoretic force for most dielectric fluids in a 60 Hz 
AC electric field (see Takashima, [28]), so the first term can be neglected. With these considerations, 
Eq.(2.2) can be written as  
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be a linear function of temperature in the form  
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where   0   is the coefficient of thermal expansion and  e 0  is the coefficient of relative variations of the 
dielectric constant with temperature, which is assumed to be small. The basic state of the system is given by  
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direction of the positive z-axis. 
    To study the stability of the system, we shall perturb the variables from the basic state. Let the small 
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 Eliminating the pressure term by operating curl twice to Eq.(2.8) and once to Eqs (2.3) and (2.8), 
then using the above perturbation and retaining the z-component, we obtain the following equations after 
suppressing primes  
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 Here ν is the kinematic viscosity, p1 is the Prandtl number, RT is the thermal Rayleigh number, Rea is 
the electric Rayleigh number (also known as the Robert number) and Ta is the Taylor number. 
 
3. Normal mode analysis 
 
 Our aim is to find the solution of system of Eqs (2.15) – (2.19). For this purpose, we assume the 
form of various variables given by 
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where σ is the stability parameter, which is a complex constant in general, xk  and yk  are respectively the x and 

y components of the wave number  2 2
x yk k k  , t  is the time variable and   i 1  . The quantities 

, , , W Z   and   are the arbitrary functions of spatial coordinate z. It should be noted that σ = 0 corresponds 
to the case of stability motion. In other words, the principle of exchange of stabilities is valid. The onset of 
over-stability corresponds to real (σ) = 0( σ ≠ 0) , Inserting Eq.(3.1) into Eqs (2.15) – (2.19), we obtain 
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 The boundary surface of the considered fluid layer (i.e., z = 0 and z = 1) are considered to be stress-
free. Therefore, the boundary conditions can be expressed as (Chandrasekhar [7]) 
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 Using Eq.(3.8) in Eqs (3.2) – (3.6), we must have  
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conditions given in Eq.(3.8) suggest that the proper solution of Eq.(3.7) characterizing the lowest mode 
should be (Chandrasekhar [7]) 
 
     sin 0W W z   (3.10) 
 
where w0 is a non-zero constant quantity. Inserting Eq.(3.10) into Eq.(3.7), we obtain the following relation 
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which is negative, showing that the electric field has a destabilizing effect on the system. The expression for 
the electric Rayleigh number can be written from Eq.(3.11) as  
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 We note that the thermal Rayleigh number and electric Rayleigh number are linear functions of the 
Prandtl number and Taylor number. 
 
4. Stability convection  
 
 The state of stability of the system is obtained by putting σ = 0 into Eq.(3.11). In this case, the 
thermal and electric Rayleigh numbers are obtained from Eq.(3.12) as 
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 We note that the expression of the thermal and electric Rayleigh numbers are independent of the 
Prandtl number (p1). Hence the stability of the system will not depend on the kinematic viscosity, however, it 
depends on micropolar viscosities. Further, we note that in the absence of rotation, the problem reduces to 
the problem already investigated by Rani and Tomar [23]. It is easy to verify that when Ta = 0, the 
expression of RT and Rea given in Eqs (4.1) and (4.2) exactly reduce to Eqs (3.11) and (3.13) of Rani and 
Tomar [23] for their corresponding problem. 
 
4.1. Special cases 
 
(i): In the absence of the electric field, i.e., when Rea = 0, relation (4.1) becomes 
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 In the absence of the coupling between heat and spin fluxes, i.e., 0  or in the case when , 0   we 
see that the second term on the right side of Eq.(4.3) is always positive. Thus, in this case, we can conclude 
that the effect of rotation on the system is likely to be stabilizing.                                                         
 
(ii): In the absence of the electric field and rotation, i.e., when Rea = Ta = 0, relation (4.1) becomes 
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. (4.4)                     

 
 This is the result obtained by Datta and Sastry [13] for the corresponding problem.                               
 

(iii): Further, in the absence of coupling between heat and spin fluxes, i.e., 0   and in the absence of 
micropolar viscosity, i.e.,  K 0 , relation (4.3) becomes 
 

  
 32 23

T 2 2

kb
R

k k

 
  .  (4.5)                     

 

 When the Rayleigh number is less than given by Eq.(4.5), the disturbance with wave number k will 
be stable. The disturbance will be marginally stable when the Rayleigh number equals the value given by 
Eq.(4.5). When the Rayleigh number exceeds the value given by Eq.(4.5), the same disturbance will be 
unstable. The critical Rayleigh number for the onset of instability is given by  
 



114                                                                H.Kaur and G.N.Verma 

   
 

,            .  

2 32 2 2 2 2

T
c2 22

3k k kdR
0 k k 2 2214

2dk k

     
      . (4.6) 

 

 The corresponding value of  
4

T
27

R
4


  = 657.5, which is the classical result of Chandrasekhar [7] in 

the corresponding problem of Newtonian fluid.  
(iv): In the absence of coupling between heat and spin fluxes and micropolar viscosity, i.e., K 0   , one 
obtains from Eq.(4.1) 
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 To find the critical value of RT Eq.(4.7) is differentiated with respect to k2 and equated to zero to get a 
polynomial in (kc

2) in the form 
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 It is observed that the critical wave number varies with Rea and Ta. The result is identical with the 
equation obtained by Shivakumara [27] in the absence of the couple stress parameter. 
 

(v): In the absence of rotation, coupling between heat and spin fluxes and micropolar viscosity, but in the 
presence of the electric field, i.e., Ta = K = and ,eaA 0 R 0     one obtains from Eq.(4.1) that  
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which coincides with the results of Roberts [6] for the corresponding problem.                                  
 

(vi): In the absence of the electric field and micropolar viscosity, i.e., when Rea = K = 0, together with ,0   
one obtains from Eq.(4.1) that 
 

    ,
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a
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which coincides with the result of Chandrasekhar [7] for the relevant problem. From Eq.(4.10), we obtain 
 

    , 
2

T
2

a

dR

dT k


  (4.11) 

 
which is positive; therefore, rotation has a stabilizing effect on the system which is an agreement with results 
derived by Takashima [28] and Rana et al. [19].                                                              
 

(vii): In the absence of micropolar viscosity, i.e., when  K 0 , together with ,0   one obtains from 
Eq.(4.2) that 
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 Further, in the absence of rotation, i.e., when Ta = 0, we get from the above equation  
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 From this we can obtain that 
 

   ea
2
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which is the same result as obtained in Eq.(3.13) showing that the electric Rayleigh number has a 
destabilizing effect on the system. 
 

    
 

Fig.1. Effect of Ta on RT in stability motions.        Fig.2. Effect of Ta on RT in over stability motions. 
 

5. Over stability motions 
 
 Since   is a complex in general, so we write      ,   ,   .R I R Ii R       For over stability convection, 

  0  and  R 0  , which gives  I 0  . Hence   Ii   and in this case, the dispersion relation (3.12) yields 
 
      TR X iY   (5.1)  
 
where X  and Y  are real valued functions of , , , , , , 1p b l k A K   and I . The explicit expression of X  and Y  
are given by 
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where  
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 For over stability motion, since σI ≠ 0, therefore  
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 Similarly, from Eq.(3.14), we can write 
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Fig.3. Effect of K and Ta in stability motions. 
 

 For oscillatory convection that is over stability motion, we shall determine the critical thermal and 
electric Rayleigh numbers from formulae (5.4) and (5.6). It is clear from these formulae that these numbers 
depend on the Prandtl number contrary to the case of stability motion. In the absence of rotation, the results 
given in Eqs (5.4) and (5.6) must reduce to those given by Rani and Tomar [23] for the corresponding 
problem. It is found that the expression of , , 1 2 3C C C and 4C  given by Rani and Tomar [23] are erranous. 
The correct expressions of these quantities are given by 
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 The correct expression of , , 1 2 3C C C and 4C  can be obtained from Eq.(5.7) likewise. 
 

6. Results and discussion 
 
 Numerical computations have been carried out to study the detailed effect of various parameters 
present in the system on the onset of convection in the fluid layer. The numerical values of relevant non-
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case of stability and over stability motions respectively. The thermal Rayleigh (RT) and electric Rayleigh 
number (Rea) are computed for different values of the wave number (k) for stability convection from 
formulae (3.12) and (3.14). For over stability motion, the thermal Rayleigh number (RT) is computed from 
formulae (5.2). This computation is a little bit tricky. For a given k, the values of σI are obtained from 
Eq.(5.4)2 and then this value of I  is used in Eq.(5.4)1 to compute RT. Figures 1 and 2 show the behaviour 
of the thermal Rayleigh number (RT) against thewave number (k) for the case of stability and over stability 
motions at a fixed value of the electric Rayleigh number (Rea), namely Rea = 1000 and for different values of 
the Taylor number (Ta), namely Ta = 0, 1000, 2000, 3000. From Fig.1, we note that the thermal Rayleigh 
number is significantly affected by the Taylor number. The value of the critical thermal number is found to 
be minimum in a non-rotating micropolar fluid layer. As the Taylor number increases, the critical value of 
the thermal Rayleigh number also increases. This shows that rotation has a stabilizing effect on the system. 
Further, we also observe that with an increase in the Taylor number, the critical thermal Rayleigh number 
shifts towards the right side, showing that the critical Rayleigh number is not only a function of Ta but also of 
k. From Fig.2, we notice almost a similar behaviour as in the case of stability motion. Here, we also note that 
the critical thermal Rayleigh number increases with an increase in the Taylor number. The effect of the 
Taylor number is seen to be more prominent before the critical wave number (k*)(the wave number at which 
the critical value of the thermal Rayleigh number occurs) than that after k*. It is observed that rotation has a 
stabilizing effect on the system in the case of over stability motion also. In Figs 3-5, we have shown the 
graphs of the thermal Rayleigh number (RT) versus the wave number (k) for different values of the Taylor 
number (Ta = 0, 1000, 5000). The value of the critical thermal Rayleigh number increases with an increase of 
micropolar viscosity, showing that the micropolar viscosity has a stabilizing effect on the system. We also 
note that as the rotation parameter increases, the critical thermal Rayleigh number also increases. Thus the 
combined effect of micropolar viscosity and rotation is to stabilize the system. 
 In Figs 6-9, we have shown the graphs of the thermal Rayleigh number (RT) versus the wave number 
(k) for different values of the micropolar viscosity parameter  , , K 1 2 3  in the case of over stability motion at 
fixed Rayleigh number (Rea = 1000) and for different values of the Taylor number (Ta = 0, 1000, 2000, 
3000). 
 

        
 

Fig.4. Effects of K and Ta in stability motions.          Fig.5. Effect of K and Ta in stability motions. 
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Fig.6. Effect of K and Ta in over stability motions.        Fig.7. Effect of K and Ta in over stability motions. 
 

   
 

Fig.8. Effect of K and Ta in over stability motions.        Fig.9. Effect of K and Ta in over stability motions. 
  
 We note from these figures that the thermal Rayleigh number increases as the value of the 
micropolar viscosity parameter increases. It also increases with an increase of the Taylor number, indicating 
that rotation and micropolar viscosity parameters both have a stabilizing effect on the system in the case of 
over stability motion. The effect of micropolar viscosity (K) on the thermal Rayleigh number curve is much 
less in the range 0 < k < k*. 
 Figures 10-12 depict the effect of rotation (Ta) on the electric Rayleigh number (Rea) for fixed values 
of the thermal Rayleigh number (RT), namely (RT = 1000, 3000, 5000) at different values of the Taylor 
number (Ta = 0, 1000, 2000, 3000) in the case of stability motion. It is noticed that the electric Rayleigh 
number increases with an increase of Ta, but decreases with an increase of RT. This  is also clear from 
formula (4.14). Next, we infer that the Taylor number has a prominent effect on the electric Rayleigh number 
curve in the range 0< k < k*, while beyond k*, the said effect is very poor and goes on diminishing as k takes 
larger and larger values. This means that the electric Rayleigh number does not depend on the rotation 
parameter at very large wave number. This fact can be made clear from formula (4.2) as k takes larger and 
larger values, the last two terms (including the term containing Ta) diminish much faster than the term 
containing RT. 
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Fig.10. Effect of RT and Ta on Rea in stability motions.        Fig.11. Effects of RT and Ta on Rea in stability motions. 
 

 
 

Fig.12. Effect of RT and Ta on Rea in stability motions. 
 

 Figures 13-15 show that the effect of rotation (Ta) on the  electric Rayleigh number (Rea) for fixed 
values of the thermal Rayleigh number (RT), namely (RT = 100, 200, 300) and at different values of the 
Taylor number (Ta = 0, 1000, 2000) in cases of over-stability motion. As the thermal Rayleigh number 
increases, the value of the critical electric Rayleigh number decreases. However, the critical electric Rayleigh 
number increases with an increase of the rotation parameter.  
 Figures 16-18 depict the effect of the Prandtl number (p1) for given values of the electric Rayleigh 
number (Rea = 1000) and for a fixed value of the Taylor number (Ta = 10, 500, 1000). We observe that as the 
Prandtl number increases, the thermal Rayleigh number also increases. Careful observation indicates that the 
critical thermal Rayleigh number also increases with an increase of the Taylor number. Thus we can 
conclude that the combined role of the Prandtl and Taylor number is to stabilize the system. 
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Fig.13. Effect of RT and Ta on Rea in over stability motions.   Fig.14. Effect of RT and Ta on Rea in over-stability motions. 
 

    
 

Fig.15. Effect of RT and Ta on Rea in over stability motions.     Fig.16. Effect of Ta and p1 on RT in over stability motions. 
 

       
 

Fig.17. Effect of Ta and p1 on RT in over stability motions.       Fig.18. Effect of Ta and p1 on RT in over stability motions. 
 

 

−4000 

−2000 

0 

2000 

4000 

6000 

8000 

10000 

12000 T Over Stability, R =100 
E

le
ct

ri
c 

R
a

yl
e

ig
h
 n

u
m

b
e
r 

(R
 )
 

ea
 

Ta = 0, 1000, 2000

0.5 1 1.5
0

2000

4000

6000

8000

10000

12000
T Over Stability, R =200 

2 2.5 3 3.5 4 4.5 5
wavenumber (k) 

Ta = 0, 1000, 2000

 

−4000 
−2000 

0 
2000 
4000 
6000 
8000 

10000 
12000 T Over Stability, R =300 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
wavenumber (k) 

ea
 

E
le

ct
ri

c 
R

a
yl

e
ig

h
 n

u
m

b
e

r 
(R

) 

Ta = 0, 1000,2000

0

2000

4000

6000

8000

10000

12000
ea Over Stability, R = 1000, Ta =10 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
wavenumber (k) 

T
 

R
a
y
le

ig
h
 n

u
m

b
e
r 

(R
) 

p1 = 0.5, 1,3 

 

4 4.5 5
0 

2000 

4000 

6000 

8000 

10000 

12000 ea Over Stability, R = 1000, Ta =500 

T
 

R
a

yl
e

ig
h

 n
u

m
b

e
r 

(R
) 

p1 = 0.5, 1,3 

4 4.5 5
0

2000

4000

6000

8000

10000

12000
ea Over Stability, R = 1000, Ta =1000 

T
 

R
a

yl
e

ig
h

 n
u

m
b

e
r 

(R
) 

p1 = 0.5, 1,3 



122                                                                H.Kaur and G.N.Verma 

 Figures 19-21 depict the effect of the Prandtl number (p1) on the electric Rayleigh number curve for 
given values of the thermal Rayleigh number (RT =100) and for different values of the Taylor number (Ta = 
0, 1000, 3000) in over stability motion. It is observed that as the Taylor number increases, the critical electric 
Rayleigh number shifts to the right. The role of the Prandtl number is to stabilize the system. 
 

    
 

Fig.19. Effect of Ta and p1 on Rea in over stability motions.     Fig.20. Effect of Ta and p1 on Rea in over stability motions. 
 

 
 

Fig.21. Effect of Ta and p1 on Rea in over stability motions. 
 

7. Conclusion 
 

 Natural convection of a rotating micropolar fluid layer heated from below and in the presence of an 
electric field has been investigated. The case of free-free boundaries has been considered. Mainly, the study 
is focused on studying the effect of rotation, micropolar viscosity and electric field on the convection 
phenomenon. From this study, we conclude that the micropolar additives and rotation of the fluid layer have 
a stabilizing effect on the system. The role of the electric field is to stabilize the fluid layer in the case of over 
stability motion. The expression of the thermal Rayleigh number is found to be independent of the Prandtl 
number in the case of stability motion. 
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Nomenclature 
 
 d  thickness of the dielectric fluid layer                  
 E  root-mean square value of the electric field    
 E0  root-mean square value of the electric field at z = 0  
 g  acceleration due to gravity                                   
 k  wave number 
 RT  thermal Rayleigh number                        
 Rea  electric Rayleigh number                             
 Ta  Taylor number                                                        
 V  velocity vector 
   thermal expansion coefficient                        
 ϵ  dielectric constant                                           
 ν  kinematic viscosity                                       
 μ  dynamic viscosity  
 σ  growth rate                                                    
 ρ  density                                                           
 Ω  angular velocity  

 
2 2

2
1 2 2x y

 
  

 
  horizontal Laplacian operator 

  
2

2 2
1 2z


  


   Laplacian operator 
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