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An investigation has been carried out for the MHD 3-dimensional flow of nanofluid over a shrinking sheet
saturating a porous media in the presence of thermal radiation and heat generation. Convective boundary conditions
for the flow phenomena are used in the present analysis. The governing equations are reduced to ODEs employing
suitable similarity transformations. The solutions of formulated differential equations have been attained
mathematically by fourth order R-K technique along with the shooting method. The impact of the governing
constraints on momentum, heat, and local Nusselt number, are explored. It is noticed that the momentum and heat
decrease with raise in the porosity variable, temperature reduces with an enhance in the thermal radiation variable,
and temperature enhances with an enhance in the heat source/sink parameter.

Key words: MHD, nanofluid, shrinking surface, thermal radiation, heat generation, porous medium, convective
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1. Introduction

Nanofluid is illustrated as a liquid in which hard nanoparticles amid the measurement lengthwise
sizes of 1-100 nm are suspended in a traditional heat transport basic fluid. Ethylene glycol, oil and water
have low thermal conductivity and are known as conventional heat transfer fluids. By adding solid
nanoparticles to conventional fluids the thermal conductivity increases. A very small quantity of
nanoparticles, when scattered stably in the base fluid, provides significant improvements in the thermal
properties of the base fluid. Nanoparticle fluid suspension (Nanofluid) is the name invented by Choi [1] to
mark out this novel theory of a nanotechnology-based energy transport fluid that shows heat properties
higher than those of the base fluid. Nanoparticles utilized in nanofluids are prepared of different materials,
such as metals (Au, Ag, Cu), carbide ceramics (SiC, TiC), nitride ceramics (SiN, AIN), oxide ceramics
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(CuO, Al,05) and carbon nanotubes. The aim of nanofluids is to get maximum feasible heat properties at the
least feasible masses (in preference less than /% by volume) by constant scattering and firm deferment of
nanoparticles in foundation liquids. To attain this be determined, it is essential to know how nanoparticles
get better the heat transfer in fluids. In current years, a number of interests have been specified to convective
transport of nanofluids. Extensive reviews on thermal conductivity of nanofluids have been published by
some researchers (Eastman et al. [2]; Choi et al. [3]; Das et al.[4]; Wang and Majumdar [5, 6]; Kakac and
Pramuanjaroenki [7]; Ho et al. [8]). An analysis of water based nanofluids in different physical conditions
have presented by (Elif [9]; Salem et al.[10]; Sheikholeslami et al. [11, 12]).The motion and energy transport
of a nanofluid past a extending sheet was reported by ( Xu et al. [13]; Sheikholeslami et al. [14]; Ramzan
and Yousaf [15]).

The investigation of fluid motion with magnetic field is significant in the polymer manufacturing,
metallurgy, engineering, physics, and chemistry, etc. Also, the MHD flow plays a vital role in problems
related to blood plasma, blood pump machines and physiological fluids. An electrically conducting liquid
dependent on a magnetic field is practical in calculating the rate of cooling. The electro-conducting liquid
has been growingly utilized in the manufacturing processes of semiconducting materials for instance silicon
crystal gallium arsenide. The effect of the magnetic field could be very helpful in the modernization of
technological processes. In consequence of their various significance these motions have been reported by
numerous researchers, remarkable amongst them are (Turkyilmazoglu [16]; Hamad [17]; Sheikholesla [18];
Ibrahim and Makinde [19]).

Radiation is the power that arrives starting a resource and travels through some objects or throughout
space. Sound, energy, and light are the kinds of radiation. The thermal radiation impact may cooperate a
important task in calculating energy transfer procedure in the polymer processing engineering and in many
manufacturing processes for instance solar power technology, astrophysical flows, fossil fuel combustion
energy processes, gas turbines, the different impulsion devices for missiles, aircraft, satellites, missiles.
Several authors reported the radiation impact on heat transport of a nanofluid in different physical
conditions, notable amongst them are (Hady et al. [20]; Nadeem and Hag [21], [22]; Turkyilmazoglu and
Pop [23]; Hsiao [24]; Ramzan and Bilal [25]; Hayat et al. [26]; Hag et al. [27]).

Rahman et al. [28] studied heat generation and slip influences on an MHD motion of H,o0 based

nanofluids in a wedge. The impact of energy generation and radiation on assorted convective flow of a
nanofluid over a non-linear extending surface was reported by Lakshmi and Reddy [29]. Malvandi et al. [30]
analyzed the heat generation impact on the stagnation-point motion of a nanofluid past a extending surface
through porous media. Hayat ef al. [31] recorded a 3- dimensional motion of a nanofluid over a extending
sheet in the presence of a heat source/sink and thermal radiation.

The flow of fluids through a porous medium is of great importance in energy elimination from nuclear
energy garbage, alternative removal of radiative devastate material, cargo space of food stuff and oil
exploration. A porous shrinking sheet, suction/inoculation of a liquid be able to significantly alter the motion
field. inoculation of liquid via a permeable shrinking surface is of ordinary alarm in several purposes which
engage boundary film be in command of purposes. These consist of outside layer of wires, silver screen
cooling, polymer fiber covering. Alternatively, injection performs in the reverse way. Suction is useful to
compound process to eradicate reactants. Injection is second-hand to insert reactants, prevent corrosion, reduce
the drag and cool the surface and also suction or injection is significant in production activities for instance in
the drawing of bearings, diffusers and oil recovery. Some authors have analyzed flow of a nanofluid through
porous media in different physical conditions, notable amongst them are (Kahar et al. [32]; Chamkha and
Ahmed [33]; Kuznetsov and Nield [34]; Sheikholeslami and Ganji [35]; Nandy and Pop [36]). Recently,
Ramzan [37] and Hayat et al. [38] investigated a three dimensional flow of a nanofluid over a stretching sheet.

2. Formulation of the problem

Three-dimensional radiative nanofluid motion over a contracting sheet by a porous media is
investigated in the present paper. The energy transport occurrence is enhanced by incorporating heat
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source/sink. The convective thermal boundary situation is also considered which affects the entire flow
phenomena. An invariant magnetic pasture of magnitude B, is useful which is parallel to the z -axis. Due to
low magnetic Reynolds number, the effects of induced magnetic field as well as electric field are neglected.
Underneath such suppositions the governing equations for the current problem with their corresponding
boundary conditions are
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here W, the suction, ¢ <0, shrinking rate and &, convective heat transfer coefficient. It be interesting to
recorded that for m, =0, the surface contracts along x-direction only and for m, =2 the surface contracts
axis-symmetrically (Zheng et al. [39]).
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here, o, (PC,),s, Ky, Pur-and p,, are the efficient thermophysical properties of nanofluid defined as

thermal diffusivity, heat capacitance, thermal conductivity, density and dynamic viscosity respectively
(Kakac [7]).
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Employing Rosseland’s approximation for radiation [40, 41], we get

* 4
4, =—(;’Z* = ] 2.11)

Here, o be the Stefan-Boltzmann constant, o be the absorption coefficient of the nanofluid. More, we
considered that the heat variation within the motion is such that 7% might be expanded in a Taylor series.

Hence, expanding T 4 about T - and neglecting high order expressions, we obtain

¢ =417 -31,7. (2.12)

Using Eqs (2.11) and (2.12) in the energy Eq.(2.4) we obtain

2
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where Np =— 7 Is the radiation parameter.
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At present establish the subsequent dimensionless parameters and similarity transformations [39]
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a .
S = v (suction/injection parameter), ¢ = L (permeability parameter),
N bU. f my bK
v (pC,) B,
Pr= % (Prandtl number) and M = ik (magnetic parameter), (2.14)
i Pr

where the prime denotes differentiation with respect to n, using Eq.(2.14), Eq.(2.1) is identically satisfied,
and substituting into Eqgs (2.2), (2.3) and (2.13) we obtain
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The boundary conditions (2.5) reduce to

fO=58, f(O=8  0(O)=—x[1-60)],
2.17)
fl(0)=>0,  8(0)—>0.

3. Method of Solution

Equations (2.15) and (2.16) are resolved with boundary conditions (2.17) by employing fourth order
R-K technique along with the shooting method. We 1* reduce the Eqs (2.15) and (2.16) into 1* order DEs by
pertaining
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The corresponding initial conditions are

Equations (3.1) and (3.2), explaind mathematically by employing 4™ - order R-K technique along
with the shooting method. In Eq.(3.2), u; and u, be unknown which are to be established in the mathematical
result and the outcomes are demonstrated in figures and tables.

The local Nusselt number be describe like under

Nu=— 9w (3.3)
kp(T;-T,)
The sheet energy flux ¢,, be describe like under
00
=k,—| . 3.4
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From Eqgs (2.14), (3.3) and (3.4) we obtain.
A
NuRe, 2 =M;6'(0) (3.5)

where Re, = HX (local Reynolds number)
L
f

4. Results and discussion

In order to study the nature of the velocity distribution, heat transfer and Nu for Cu-H,o0 based
nanofluid, mathematical results be carried out for the different values of ¢,8,¢,M, S, Ni,Q and k which be

recorded in graphs and the outcomes be examined graphically. In this chapter, we use the thermo physical
properties of water and nanoparticles as given in Tab.1.

Table 1. Thermo physical characteristics of /7,0 and nano particles.

p(Kg/m’)  Cpikgh) K(W/m.k) px10°(K~')
Water (H,0) 997.1 4179 0.613 21
Silver (Ag) 10500 235 429 1.89
Copper (Cu) 8933 385 40 1.67
Titanium oxide (Ti0,) 4250 686.2 8.9538 0.9
Alumina (ALOy) 3970 765 40 0.85

Figure 1 depicts the influence of nanoparticle volume fraction on the momentum. It be obvious that,
as the ¢ rises, the velocity diminishes because when the volume of nanoparticles increases, the &, grows,

and the thickness of the velocity boundary layer decreases. Figures 2-5 depict the impact of the shrinking
parameter, porosity parameter, M and S on the velocity, respectively. It is apparent that, as the magnitude
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of such parameters increases, the velocity diminishes. The reason is that the growing value of these
parameters decreases the velocity boundary layer thickness.
Figure 6 depicts the impact of ¢ on the energy profile. It is surveyed that, as the ¢ grows, the

temperature upsurges because while the volume of nanoparticles rises, the &, upsurges and the width of the

thermal boundary layer lessens. Figures 7 and 8§ illustrate the influence of the porosity variable and shrinking
parameter on the heat description, respectively. It is clear that, for the growing value of the porosity
parameter and shrinking parameter the heat description diminishes. Figure 9 illustrates the effect of heat
source/sink variable on the energy description. It is observed that for the growing value of source/sink
variable the energy profile upsurges and it be obvious that the energy in the case of heat source is superior
than in the case of sink. The influence of the N, on the energy description is showed in Fig.10. It is noted

that the thermal radiation yields a diminution in the temperature profile because the thermal radiation
parameter diminishes the thickness of the thermal boundary layer. The effect of the k¥ and S on the heat
profile are exposed in Figs 11-12. It be noticed that the heat grows as k enhances while it diminishes as S
increases. Figure 13 depicts the effect of the magnetic variable on the heat profile. It be observed that the
heat profile upsurges as M increases. The reason is that the Lorentz force resists the motion of fluid, thus
heat is produced and therefore the width of the thermal boundary layer upsurges.

1
From Tab.2, we observed that the value of Nu(Rex )7 upsurges for the growing value of the k, ¢ and M

magnetic parameter.

0.00 . e

002} P ]

py $ =09 07, 05, 01

008} & i

Fig.1. Velocity description for different values of the nanoparticles volume fraction.
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Fig.3. Velocity description for dissimilar values of the porosity parameter
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Fig.4. Velocity descriptions for dissimilar values of the magnetic parameter.
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Fig.7. Energy descriptions for assorted values of the porosity parameter.
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Fig.8. Energy descriptions for assorted values of the shrinking parameter.
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Fig.10. Energy descriptions for diverse values of the radiation parameter.
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Fig.11. Energy descriptions for diverse values of the Biot number.
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1
Table 2. Comparison of values of Nu(Rex )_5 for ¢=0.5,m=2,Pr=6.2,S=0.8 and 8=-0./ when N,
and Q are not considered i.e. (N =1,0=1).

-M ;06'(0) -M;6'(0)

M ¢ v Hayat et al. [26] Present study

HAM solution (Shooting method)

0.5 0.05 0.3 0.336178 0.330998
0.7 0.336187 0.331033
1.0 0.336201 0.331119
2.0 0.336996 0.332016
0.2 0.01 0.301109 0.298495
0.05 0.334288 0.329618
0.07 0.355511 0.348101
0.1 0.379977 0.376500
0.05 0.1 0.113946 0.113439
0.3 0.332611 0.329963
0.5 0.537019 0.539584
0.7 0.767305 0.745753

5. Conclusions

In the present study, an analysis was made in order to investigate an MHD three dimensional motion

of a nanofluid over a contracting surface with N, and Q through permeable medium. The physical impact

of different parameters for instance the magnetic parameter, permeability variable, shrinking variable, mass
transfer parameter, Biot number, radiation parameter and heat source/sink parameter on momentum and
energy descriptions are depicted and discussed in this paper. The main observations are listed below.

e The effects of the magnetic parameter M, nanoparticle volume fraction ¢, shrinking parameter A , mass

transfer parameter S and Biot number y on the velocity description f' are similar.

e The velocity description f' reduces while the nanoparticle volume fraction ¢ enhances.

o The effects of the magnetic parameter M, radiation parameter N, porosity parameter d, shrinking

parameter A, and mass transfer parameter S on the temperature description 6 are similar.
o The energy profile 6 reduces when the radiation parameter N, enhances.

e The energy description 6 enhances as the nanoparticle volume fraction ¢, heat source/sink parameter &

and Biot number y increase.

e The temperature profile 0 in the case of heat source (&> 0) is superior than in the case of sink (8 <0).

Nomenclature

By — magnetic flux density

C - concentration of species

Cp - specific heat at constant pressure

¢ — shrinking rate

h; — convective heat transfer coefficient

K - permeability parameter
k* — absorption coefficient
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k,r — thermal conductivity

M — magnetic parameter

M;,M,,M; and k, — constant related to properties of the nanofluids

Ny —radiation parameter

Pr — Prandtl number
O — heat source parameter

g, — radiative heat flux

Re, —local Reynolds number

X
S — suction/injection parameter

T — the fluid temperature

T, - the fluid temperature at infinity

o0
W — suction parameter

o, — thermal diffusivity of the nanofluid

— shrinking parameter
— non-dimensional Permeability parameter

— dimensionless temperature
— Biot number parameter
w,r —dynamic viscosity of the nanofluid

13
S
n - similarity variable
)
K

v,r —kinematic viscosity of nanofluid
p,s — density of the nanofluid
(pCp),s — heat capacitance of the nanofluid

o' — Stefan-Boltzmann constant
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