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This paper is aimed at a dynamic analysis of a hydraulically lifted ladder by means of analytical and 
numerical calculations. The solutions used in the dynamic analysis of mechanical systems were used in the 
analytical solution. A numerical model was created to verify the achieved results of the solved mechanical 
system with simulation of its motion. 
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1. Introduction 

 
For safety at a variety of height work, whether in industry or at home, ladders need to be designed to 

facilitate and increase worker safety. That is the one of the reasons why it is necessary to modernize the 
construction because of the ever-increasing demands for safety. It is therefore necessary to know their 
physical, dynamic and kinematic properties when designing ladders. The aim of the paper is to dynamically 
analyze the hydraulically lifted mounting ladder, which is necessary for the ladder sizing in order to achieve 
the best required properties. 
 
2. Analytical solution of mechanisms 

 
In analytical mechanics, relationships sometimes use scalar quantities (work, energy, power, etc.), 

and these methods are generally more difficult in terms of a mathematical model of mechanical systems than 
the methods used in vector mechanics that are based directly on Newton's laws. 
 
2.2. Method of reduction weight and force variables 

 
If we want to determine the movement of a mechanical system by dynamic analysis and we know 

external force effects, we use the method of mass and force quantities. If we want to find out the movement 
of the system of bodies and the internal forces with coupling reactions under the influence of known force 
variables, it is preferable to choose the reduction method to solve the problem of dynamic body systems. In 
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this case, we reduce the force and mass quantities to a particular rotating member or to a point of a particular 
member. If we reduce to the point of member, it is a reduction to the sliding member. [1] 

If we reduce the mass quantities of moving mechanical systems with one degree of freedom, the 
kinetic energy of the system after reduction is equal to the kinetic energy of all members of the system. If we 
reduce to a point, the movement of the entire mechanical system is expressed as the motion of the reduced 
weight at the point of reduction. By reducing to a rotating member, we replace the motion of the system by 
moving the rotating member with reduced moment of inertia redI . [2] 

 
2.2.1. Reduction to a point 

 
Each member in a planar mechanical system can perform general planar motion, rotational motion, 

or translational motion. All members that will perform the sliding motion are denoted by the index i , and 
their number np. The index j  denotes the members that perform the rotational motion, their number is 

denoted by rn , and the members that perform the general planar motion are denoted by the index k and the 

number on . For all members of the system it is valid that the kinetic energy is 
 

     ,
p orn nn

2 2 2 2
k i i j j k Tk Tk k

i 1 j 1 k 1

1
E m v I m v I

2   

 
      
  
    (2.1) 

,i km m  - the mass of the system members, wherein the displacement member is denoted by i, and the 
member that performs the general plane motion, the index k, 

,j TkI I  - moments of inertia, where a system member with index j  performs a rotational motion to the axis 

of rotation and a member with index kT , performs a general planar motion to the axis of rotation 
passing through the center of gravity, 

iv  - the speed of the i-th member of the system performing the sliding movement, 

kT - the velocity of the center of gravity of the k-th member of the system that performs a general planar 
motion, 

j  - the angular velocity of the j-th member of the system that performs the rotational motion, 

k  - the angular velocity of the k-th member of the system that performs a rotational motion about the axis 
passing through the center of gravity. [3] 

 For the reduced mass concentrated at the reduction point, the kinetic energy is 
 

   ,2
kred red

1
E m v

2
  (2.2) 

v  - reduction point speed, 

redm  - reduced weight, which is concentrated at the point of reduction. 
 We can write 
 

  .k k redE E  (2.3) 

 By substituting Eqs (2.1) and (2.2) to Eq.(2.3), we will define redm  
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 From the point of view of inertia, the entire mechanical system will be equally replaced by a reduced 
weight redm . [4] [5] 
 
2.2.2. Reduction to rotating member 

 
If we replace the motion of the entire mechanical system with the rotational motion of a member 

with reduced torque redI , its kinetic energy will be 
 

  .2
kred red

1
E I

2
   (2.5) 

We substitute Eq.(2.5) to Eq.(2.4), if kE  is determined by Eq.(2.1) and it will be after the subsequent 
modification equal to 
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The same conclusions are valid also for redI . [6][7][8] 
 
2.2.3. Reduction of power quantities 

 
The basis of the reduction method is to replace the movement of the mechanical system. This 

movement can be replaced by a reduced weight motion that is concentrated at a certain point and reduced by 
the force redF , or by the rotational movement of the member, with the moment of inertia to the axis of 

rotation redI  to which the reduced torque redM  acts. [8][9][10] 

 We will determine the reduced force redF  from the relationship 
 
   .  ,redF ds dA  (2.7) 

ds  - vector of the elementary displacement of the reduction point, 
dA  - the resulting elemental work of external force effects, which is needed to elementally change the 
position of the system. 
 The instantaneous powers of the reduced force are equal to the force effects that affect each member 
of the system 
 
   .  ,redF v P  (2.8) 

P  - the resulting instantaneous external force effects, 
v  - is the speed of the reduction point. 
 If we reduce it to a rotating member, the size of the reduced torque redM  is determined similarly. 
We can write 
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   .  ,redM d dA  (2.9) 

d  - vector of elementary rotation of a rotating member. 
 Equal immediate performance 
 
   .  ,redM P  (2.10) 

where   - angular velocity of the rotating member, motion equation for a moving mechanical system with 
one degree of freedom. 
We can write 
 
   ,kdE dA  (2.11) 

kdE  - change of kinetic energy in elementary change of system position, 
dA  - work of external force effects in elementary change of system position. 
 If we assume that the direction Fred is identical with the direction v, after adjusting Eqs (2.2), (2.3), 
(2.7) we get 
 

    .2
red red

d 1
m v F

ds 2
  
 

 (2.12) 

 By derivation of the left side of the equation we get 
 

      ,2red
red red

dm1
m a v F

2 ds
   (2.13) 

a  - acceleration of the reduction point. 
The reduced mass, in a constant gear system, is a  constant quantity; it is not dependent on the 

instantaneous position of the system. [11] 
 The equation of motion (2.13) is in this case 
 
    .red redm a F  (2.14) 

If we solve the mechanical system by reducing it to a rotating member and we assume that the 
directions redM  and   are identical, then by substitution into Eq.(2.11) we get 

 

  .  2
red red

d 1
I M

d 2
     

 (2.15) 

 We differentiate the left side of Eq.(2.15) and we get 
 

      ,2red
red red

dI1
I M

2 d
  


 (2.16) 

  - the angular acceleration of the rotating member. 
 In a constant gear system, the motion equation becomes 
 



234                                                                     P.Frankovský, I.Delyová, M.Trebuňová, P.Čarák, M.Kicko and P.Kuryło 

    .red redI M  (2.17) 

The previous equations also are valid in systems where passive resistances are considered. To 
calculate frictional forces and force pairs, we need to know the binding reactions. These are usually 
determined by the release method. We cannot accurately analyze the amount of passive resistance; therefore 
we do not usually consider them in specific examples using the reduction method. [2][12][13][14] 

If we use the reduction method for mechanical systems with elastic bonds, we must use reduced 
system stiffness in the reduction to the shifting member, and use the reduced torsional stiffness of the system 
by reduction to the rotating member. [15][16][17] 
The reduced stiffness is determined from the equation 
 

    .pred pE E  (2.18) 

 
3. An analytical solution of ladder design 

 
The ladder is lifted from the initial position determined by points A0, B0 to the working position 

(Fig.1). The method of reduction to a rotating member will assemble the motion equation of the examined 
system if a constant force F is applied to the piston of the hydraulic cylinder. The body of ladder 2 is guided 
by pulleys at points A and B, which roll in horizontal and vertical plane. We do not consider passive 
resistances. 
 The solution is given by geometric and mass quantities 
 

  , , , , , , , , , , , .2 3 4 5 2S 2 3A 4B S 2m m m m l l I r l l L F const  
 

 
 

Fig.1. Diagram of a hydraulically lifted ladder. 
 
 This is a planar system with 1 degree of freedom with variable gear 
 

       .n 3 m 1 2 r v o        (3.1) 
 

Substituting we got 
 

     n 3 6 1 2 4 1 2 15 14 1          (3.2) 
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There is 1 independent coordinate that uniquely determines the position of the mechanism. 
Select: q    - angle of mounting ladder 
 Subsequently, the necessary lifting dependencies 
 
  cosAx L l     sinAx l  , 
 
     cosS 2 S 2x L l l         sinS2 S 2x l l   , 

 
   sinS2 S 2y l    cosS2 S 2y l  , 
 
  sinBy l    cosBy l  , 
 

  A 3x r     sinA
3

x l

r r
   

  , 

   B B0 4y y r      
  cos0BA y

4

x l

r r
   


  , 

 
   B0y 0 , 
 
where 

Ax - distance of point A in the x-axis direction, 

A0x  - distance of point A0 in the x-axis direction, 

S2x - the center of gravity of body 2 in the x-axis direction, 

S2y - the center of gravity of body 2 in the y-axis direction, 

By  - distance of point B in the y-direction, 

B0y  - distance of point B0 in the y-direction. 
Reduce the system to a fictitious rotating member. The total kinetic energy of the system is given by 

the kinetic energy of bodies 2, 3, 4 acting on the general plane motion and bodies 5 acting on the sliding 
motion. [18][19][20] 
 The following applies 
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Adjusting we get 
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Introducing 
 

    ,
2 23 A

2 S 2 3 2

I
A m l l m l
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  ,2 24B
2 S 2 4 5 2

I
B m l m m l
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the following applies 
 

      ,2 2 2 2
k red 2S 2

1 1
E I I Asin Bcos

2 2
          

   (3.4) 

    .2 2
red 2S 2I I Asin Bcos       

 
The workforce and force pair are given as 
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 We substitute Eqs (3.3) and (3.4) [7][16][21] 
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       sin cos cos .2 2 2
2S 2 4 5 2 S 2I Asin Bcos A B F m g m g l m gl                

 
4. Dynamic analysis using MSC Adams 

 
After the model was made, simulations of the movement of the hydraulically lifted ladder and the 

detected physical quantities of the designated members of the system were performed. Quantities that were 
detected, the more accurate trajectory, the speed, and the acceleration were determined in the pulleys 
mounted at both ends of the ladder (Fig.2). 
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Fig.2. Hydraulic lifting ladder and boundary conditions. 
 
Subsequently, these results were processed in Postprocessor with which were generated the 

trajectory, velocity and acceleration graphs of the examined system members. These results are shown in 
Figs 3, 4, 5. 

 

 
 

Fig.3. Graphic course of the path of pulley A versus time. 
 

 
 

Fig.4. Graphic course of the speed of pulley A versus time. 
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Fig.5. Graphic course of the acceleration of pulley A versus time. 
 
From the Postprocessor we have obtained the required quantities for the pulley located at the top of 

the ladder. The following figures (Fig.6, Fig.7, Fig.8) show the graphic trajectory, speed and acceleration 
versus time 

 

 
 

Fig.6. Graphic course of the path of pulley B versus time. 
 

 
 

Fig.7. Graphic course of the speed of pulley B versus time. 
 

 
 

Fig.8. Graphic course of the acceleration of pulley B versus time. 
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5. Conclusion 
 
We do not consider passive resistances in the solution and therefore we are unable to determine 

exactly whether these values would be accurate in the real mechanism. If the output values of the trajectory, 
speeds, and accelerations were appropriate, the design of the hydraulic ladder could be used in practice, at 
different heights, but since we were dealing with a simplified ladder model, modifications to the mechanical 
system would still be necessary. The advantage of this hydraulically lifted ladder is its relatively simple 
construction compared to multi-section ladders whose construction is complex. 
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