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A b s t r a c t  

The paper deals with a shape optimisation procedure of steel, compressed bars. Circular 
hollow sections (CHS) of variable cross sections and variable wall thickness are taken into 
account. The proposed procedure for designing of steel rods exhibiting maximum 
compression resistance is effective and possible to use in engineering practice. 
The advantage of the proposed shape of the bar is that it allows to increase the value of its 
load carrying capacity, i.e. it ensures the transfer of a higher value of compressive force 
than similar, solid struts of the same mass and length. The extent of the increase in the 
load capacity relative to the load capacity of the reference solid, cylindrical bar depends 
on the slenderness of the reference bar and ranges from 60% to 170%. Due to this very 
beneficial fact, it can be used wherever it is required to maintain a certain stiffness and an 
increased value of compressive force is desired, as well as in constructions where it is 
necessary to reduce weight while maintaining the adopted mechanical parameters, e.g. 
values of load bearing capacity. Final results achieved in the research were presented in 
the form of the flow chart allowing to design the compressed columns of optimum shape. 
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1. INTRODUCTION 

Designing of structural systems is based primarily on meeting specific strength 
conditions. To this end, calculations are performed to meet load and serviceability 
requirements. Thanks to this, the constructor receives parameter values that allow 
creating a better design than others (in the indicated respects). Structural shaping, 
which is the result of using strictly strength conditions, may not always be 
satisfactory. Therefore, engineers' special attention is attracted by design 
optimization that goes far beyond the strength design framework (cf. [2, 15, 21]). 
It enables the placement of material in a given design area in such a way that the 
resulting load-bearing system carries the given load, and at the same time is the 
best possible system due to previously set criteria. 

 
Fig. 1. Turning Torso (source: [10])  

The idea described above, which has been developed almost since antiquity 
(cf. [1, 4, 8-10, 20]) can be found almost everywhere - new areas of light materials 
applications are being discovered, e.g. in household appliances, in the construction 
of machinery and equipment for virtually all branches of the economy, or in 
construction (Fig. 1) and in vehicle construction in the broad sense: in the 
automotive industry, weight minimization is of great importance (Fig. 2), because 
the total weight of the vehicle has a significant impact on fuel consumption, which 
translates into operating costs and indirectly affects the emission of harmful 
substances into the environment.  
Increasing requirements in this area determine the designers to constantly search 
for new, lighter materials and technical ways of joining them, as well as to shape 
the elements of the structure that would meet the above objectives.  
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Fig. 2. The ideal image of a vehicle with minimum weight (source: [14])  

The presented paper concerns the procedure of designing of steel bars with 
variable CHS cross-section, showing the maximum load carrying capacity. 
Geometrical parameters derived in the paper as a result of the optimisation 
procedure were expressed by closed analytical formulae and the flow chart 
defining consecutive steps of the designing procedure was presented as well. 
Compressed bars of the proposed shape can transfer forces up to 170% higher than 
the forces carried by solid cylindrical bars of the same mass treated in the 
procedure as reference bars ripening. 

2. SUBJECT OF PAPER AND MAIN ASSUMPTIONS  

The subject of detailed considerations presented in the paper is the compressed 
(cf. Fig. 3), non-prismatic hollow rod with an annular cross-section, the volume 
of which is formed in the following way: generator - external and internal - are 
arches of certain given continuous flat curves (the assumed curves are hyperbolic 
cosine - cf. description relations (2.1)), while the solid itself is the result of the 
rotation of these curves around the geometrical axis of the bar (see Fig. 4). 
Hyperbolic cosine shapes were selected between other smooth functions 
considered earlier (cf. [9 -11]).  

 

Fig. 3. Static scheme of the strut 



82 Jakub MARCINOWSKI, Mirosław SADOWSKI 

 
 

The bar geometry is as follows: rp is the length of the outer radius forming the 
cross-section at the rod ends, rm – the length of the outer radius forming the cross-
section in the middle of the rod length, L – rod length, while t – wall thickness in 
the half rod length. The wall thickness of the bar is variable along its axis, with its 
ends being expressed by a compound 𝛼t where 𝛼 is the ratio of the wall thickness 
of the bar at its ends to the wall thickness of the bar in half its length (Fig. 4). 

 

Fig. 4. Cross-section of the upper half of the non-prismatic annular rod  
and variable wall thickness (scale not preserved; source: [10])  

The external and internal generators of rotational surfaces are (as mentioned 
above) the result of rotation of hyperbolic cosine functions defined as follows: 

𝑓 (𝑥) =  cosh − +
·

,  

𝑓 (𝑥) =  
( α)

cosh − +
α ·

  

(2.1)

where  𝑓 (𝑥) denotes a functional relation whose graphic image is external 
forming solids of a bar, while 𝑓 (𝑥) – a compound whose graphic image is the 
inner forming solids of a bar (see Figure 4). 
The initial optimization assumption is based on the fact that the non-prismatic 
CHS bar in question has the same mass with the mass of a certain, solid cylindrical 
rod of the same length L and cross-sectional radius r0. The additional assumption 
that both bars will be made of the same amount of material implies their equal 
volume (Fig. 5); this leads to the relationship: 

𝜋r L = 𝜋 𝑓 (𝑥) − 𝑓 (𝑥) 𝑑𝑥, (2.2)
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Fig. 5. Rods considered: 

non-prismatic CHS bar (a) and the reference, solid, cylindrical rod (b)   

which, after transformations made in the MathematicaTM program (cf. [5-6]), 
binds the radii of individual sections - at the ends of the bar and in its center:  r =

r r , and namely 

r =
√  / ( )

( ) ( ) √ / t +  

+
√ α( α ) α α α α

(α ) (α ) α √ α / α
t +  

+
/ ( ) ( ) ( ) √ ( )

( ) ( ) √ / r , 

(2.3)

where e is the Euler number (also called the Neper number). 
 

Let the considered rod be subjected to axial compression. It was assumed that it is 
simply supported at the ends and that its geometry was disturbed with the initial, 
arched geometric imperfection, which is represented by the relation: 

𝑓(𝑥) = 𝑒  sin 
𝜋

L
𝑥, (2.4)

where e0 represents the amplitude of imperfection (e0 = L/250 adopted in further 
considerations). 
 
A graphical view of the above assumptions is presented in a static scheme  
(Fig. 6) in which w(x) denotes an additional bending of the strut. 

 
Fig. 6. Static scheme of the system ripening 

a) 

 
b) 
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3. OBJECTIVE FUNCTION AND SET OF RESTRICTIONS 

Due to the problem posed, the objective function is the maximum compressive 
force: 

F = max. (3.1)

Let us assume that the bar is to work in the elastic range. Therefore, it is necessary 
to examine the following issue: searching for the maximum compressive force, 
the value of which will not cause plasticizing the material at any point of the bar 
(Fupl): 

F = max ⟹ F ( ) = F. (3.2)

So, the objective of the optimisation procedure is maximizing the following 
expression: 

F = f · A
L

2
·

I

I + · r · A
 (3.3)

where: 
 fy  – yield stress of steel used to make the bar, 
 A(x) – variable cross-sectional area: 

A(𝑥) = 𝜋 𝑓 (𝑥) − 𝑓 (𝑥)  (3.4)

 I(x) – variable moment of inertia of the cross-section: 

I(𝑥) =
𝜋

4
𝑓 (𝑥) − 𝑓 (𝑥)  (3.5)

The relationship (3.3) is a consequence of the direct transformation of the relation 
expressing the stress at the middle section of the rod (Fig. 7) and their limitations 
by the yield stress fy : 

σ =
F

A
+

F · 𝑒 · r

I
≤ f . (3.6)

In this formula it was assumed that the amplitude of imperfection bow  
𝑒 = L/250 and F = Fupl and the inequality was replaced by an equal sign, 
and after relatively simple transformations the formula (3.3) was obtained.  
The same relationship can be obtained by elementary transformation of formula 
6.44 found in Eurocode 3 - PN EN 1993.1-1. Steel structure design. General rules 
and rules for buildings (assuming bending in one direction) (cf. [12]). 
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It is worth mentioning that the formula (3.6) does not include the amplification 

factor 1/(1 − )which should increase the initial amplitude e0 according to well 

known Ayrton-Perry approach. This simplification was compensated by the 
significant increase of the initial amplitude e0 to the value L/250.  

 

 
Fig. 7. The geometry of the bar in the middle of its length 

 
Let us move on to bar shape optimization. It will be based on the search 
for extreme compressive force (3.3) for three independent decision variables: 
a) the outer radius forming a cross-section at the ends of the element (rp),  
b) wall thickness at the middle section of the bar length (t) 
c) the ratio of the wall thickness at the rod ends to the wall thickness at the middle 

section (α). 
Let us define a set of constraints. 
 Geometric constraints: 

 equality of bar masses: 

 m ( ) = m ( ), (3.7)

where mp(r) - reference bar mass, mp(d) - hollow bar mass,  
 positive wall thickness in the middle of the bar length 

 t > 0, (3.8)

 positive value of the outer radius of the bar solid forming at its end 

 r > 0, (3.9)

 positive value of the wall thickness ratio at the rod ends to the wall thickness 
in its half  

 α > 0,  (3.10) 
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 Stress limits: 
 the maximum stress should not exceed the yield stress (f ) at the end of the 

bar and half its length: 

 σ (0) ≤ f , σ (L/2) ≤ f , (3.11) 

 the impossibility to exceed the critical stress values of the cylindrical shell 
(local loss of stability of the cylindrical compression shell; cf. [7, 17-20]) 
at the end of the bar and half its length:  

 σ (0) ≤ σ ( )(0), σ (L/2) ≤ σ ( )(L/2), (3.12) 

where symbol σ  means the actual stresses in the bar (more precisely – 
in the bar wall), while the limit stresses are described by relations 

 

 

σ ( )(0) =
( ν )

α

( )
,  

σ ( )(L/2) =
( ν ) ( / )

  
(3.13) 

where: 

 
𝑅(𝑥) =

1

2
𝑓 (𝑥) + 𝑓 (𝑥) , (3.14) 

and E is Young's modulus. 
 
It is worth of mentioning that the formula (3.13) is valid for the compressed 
cylinder of constant wall thickness. It was adopted here to eliminate the wall local 
buckling. 
The search for extreme (more precisely maximum) compressive force (objective 
function defined by formula (3.3)) was implemented in the MathematicaTM 
program (cf. [6, 7]). This operation is fully implemented in the Maximize 
procedure (allowing to find the maximum global function in the area defined by 
constraints), although the problem raised, due to the complexity of calculations, 
uses the equivalent command using the iterative (numeric) sequence – NMaximize 
, which performs the same task. It was requested that the iterative array uses a 
stochastic optimization method, namely the differential evolution algorithm 
(Differential Evolution, cf. [6, 13]). The number of iterations was limited to 500. 
As it results from the above, determining the shape of a bar with maximum load 
carrying capacity involves carrying out a highly complicated optimization 
procedure that can be carried out in a program using symbolic transformations – 
for example, in the referenced MathematicaTM program. Due to the fact that it is a 
very advanced program and hardly accessible to engineers or designers, there has 
been a need to adapt the results of complex optimization procedures to project 
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needs, by creating a relatively simple algorithm that can be used in engineering 
practice. 
The performed analysis (a number of calculations and numerous observations 
supported by many examples) showed that it is possible. Below is the algorithm 
that allows to determine the shape of an optimal bar, i.e. a bar showing increased 
resistance to compression. 
More precisely, the bar geometry presented by the formulas (2.1) and (2.3) 
is complicated due to the complexity of these relations, especially (2.3), which is 
a consequence of the equation (2.2). This causes a lot of trouble in engineering 
calculations. The procedure shown below is a presentation of the algorithm that 
will best approximate the exact procedure, while being simple and easy to apply. 
The simplification consists in replacing the relation (2.3) with its approximate 
form - the formula (3.19) and using empirical relations (3.20) and (3.21), which 
allow to determine the parameters sought. Thanks to all measures, the increase in 
load capacity practically does not decrease and the calculations become much 
easier. 
The proposed design procedure obtained as a result of very laborious 
optimizations carried out by means of MathematicaTM system is as follows. 

 
The procedure is confined to reference bars of following geometrical parameters: 
 radius of the cylindrical reference bar [mm]: 

4 ≤ r ≤ 40, (3.15) 

 slenderness of the cylindrical reference bar: 

λ = 2L/r    and   100 ≤ λ ≤ 250, (3.16)

which implies a condition that meets the length of the bar: 

100r

2
≤ L ≤

250r

2
 (3.17) 

The outer radius forming a cross-section of optimal bar at its ends (value adopted 
a priori): 

r = L/25, (3.18) 

 outer radius forming cross-section at the middle of the length of the bar:  

r = 1,45r , (3.19) 

 the ratio of the wall thickness of the support member at its ends to the wall 
thickness of the element at the middle of its length: 
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α(λ) = 1738143 · 10 − 11228 · 10 λ + 11567 · 10 8λ2 + 

 −61091 · 10 11λ3 + 16194 · 10 13λ4 − 17067 · 10 16λ5,  
(3.20) 

 wall thickness in the middle of the length of the supporting bar element: 

t(λ) = 41167 · 10 5 − 69305 · 10 7λ + 478 · 10 7λ2 + 

−1520808 · 10 13λ3 + 1842424 · 10 16λ4 rm. 
(3.21) 

Compressive force value (Fwrz(max)), sustained by the bar defines the relation 
(3.3). The increase in the load carrying capacity of the optimal spindle rod 
(defined as above) in relation to the load capacity of the reference rod [%] 
is determined by the formula: 

Wwrz ref =
Fwrz(max) −  Fref(max)

Fref(max)
· 100 (3.22) 

where: F ( ) is the maximum compressive force of the reference bar: 

Fref( ) = f A
I

I + r A
 (3.23) 

and A  and I  is the cross-sectional area and the moment of inertia of the reference 
bar, respectively. 
The relation (3.19) and relationships (3.20) and (3.21), which are functions of the 
slenderness of a reference bar and have the character of polynomial expansions, 
are the result of the analysis and interpretation of the results obtained for many 
cases of bars of various shapes – a number of reference bars for which geometries 
were defined were adopted the following slenderness (λ) and radii (r0): 
 λ = {100, 125, 150, 175, 200, 225, 250}, 
 r0 ={4, 5, 8, 10, 20, 30, 40} [mm] 
and the materials from which they were made: 
 steel S 235 (fy = 235 MPa), 
 steel S 275 (fy = 275 MPa). 
Studies have shown that in each case analyzed: 
 ratio rm/rp is constant and almost equal to 1.45 – hence its approximate value 

(cf. (3.19)),  
 dependencies (3.20) and (3.21) are the result of statistical polynomial 

regression: fifth polynomial in the case of α = α(λ) (formula (3.20)) and 
fourth-degree polynomial for formula t/rm = t(λ)/rm (relation (3.21)); the 
choice of the degree of individual regression polynomials was dictated by the 
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value of the correlation coefficient (R), which, in each of the analyzed cases, 
was in the range 0,99 ≤ R ≤ 1. 

On the basis of the results obtained and the statistical regression carried out, it can 
be stated that the use of the formula (3.19) and the obtained functional relations 
(3.20) and (3.21), and thus the entire algorithm (3.15) – (3.23), is completely 
justified. To be sure that the simplified form of the formula (3.3) is justified, it is 
recommended to check if Fult/Fcr<0.7, where Fcr is the buckling load determined 
from the energy criterion for the considered bar (cf. [9-11]). If the condition 
Fult/Fcr<0.7 is fulfilled, the amplification factor is equal 1 and the formula (3.3) 
is fully correct. In opposite case it is recommended to recalculate Fult from formula 
(3.3) in which the amplification factor is taken into account.  

4. NUMERICAL EXAMPLE  

As an example let us try to determine the optimal shape of the cylindrical reference 
bar with a radius of 18 mm and a length of 1184 mm, determine the shape of the 
optimal bar, sustaining the maximum compressive force. The material from which 
the bar was made – steel S235 (fy = 235 MPa – according to PN–EN1993-1-1). 
Data:   
Reference bar: 
 radius r0 = 18 mm, 
 length  L = 1184 mm. 
Geometric characteristics of the reference bar: 
 slenderness λ = 131,55,  
 cross-sectional area:  A0 = 1017,9 mm2, 
 moment of inertia of the cross section:  I0 = 82448,0 mm4, 
 value of maximum compressive force: Fref(max) = 116,544 kN. 
The solution is presented in Table 1 in which results of the proposed simplified 
procedure were compared with the strict optimization results. 

Table 2. Comparison of optimal rods, obtained by using strict and proposed algorithms 

 
Optimal rod according  
to strict optimization  

procedure 

Optimal rod according  
to the proposed  

algorithm 

rp 49.90 mm 47.36 mm 

rm 71.60 mm 68.67 mm 

α 1.28 1.29 

t 2.37 mm 2.48 mm 
𝐹 = 𝐹 ( ) 216.551 kN 216.059 kN 

Wwrz ref 85.81 % 85.39 % 
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The solution is presented in Table 1 in which results of the proposed simplified 
procedure were compared with the strict optimization results.  
To be sure that the amplification factor could be neglected, the critical force was 
calculated. From the energetic criterion the value Fcr =18.0325*106 N 
was obtained. It means that the amplification factor is equal 

1

1 −
=

1

1 −
. ∙

. ∙

= 1,012 . (28)

It confirms the correctness of the simplified form of the formula (3.3). The shape 
of the rod showing maximum resistance to compressive force is shown in Fig. 8. 
In authors’ opinion, the proposed simplified algorithm for determining the optimal 
shape of a compressed bar is almost consistent with the exact algorithm. This fact 
is confirmed by the above example. The differences between the results of the 
strict optimization procedure and the results of the proposed, simplified approach 
are small and confirm the usefulness of the latter for practical engineering 
calculations. 

 
Fig. 8. Graphic image of the upper half wall of the optimal rod  
and the upper part of the reference rod - under the dashed line 

(scale not preserved) 

5. SUMMARY AND CONCLUSIONS  

The procedure for designing of steel rods exhibiting maximum compression 
resistance proposed in the work is effective and possible to use in engineering 
practice. 

1. The advantage of the proposed shape of the bar is that it allows to increase the 
value of its load carrying capacity, i.e. it ensures the transfer of a higher value 
of compressive force than similar structural member of the same mass and 
length. The extent of the increase in the load capacity relative to the load 
capacity of the reference, solid cylindrical bar depends on the slenderness 
of the reference bar and ranges from 60% to 170%. 
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2. Due to this very beneficial fact, the proposed design procedure can be used 
wherever it is required to maintain a certain stiffness and an increased value 
of compressive force is desired, as well as in constructions where it is 
necessary to reduce weight while maintaining the adopted mechanical 
parameters, e.g. values compressive force.  

3. The compressive bar was shaped in such a way that under applied 
compressive force, the magnitude of normal stresses did not exceed the values 
at which elastic-plastic deformations could occur. The proposed shape also 
guarantees the rod's resistance to local buckling. 

4. One of the many uses of the support bar element according to the authors’ 
proposal may be to place it in the position of the strut of the shock absorber 
cups in the engine compartment of the car. It is also possible to use a support 
rod as a core of a beam with a smaller mass compared to known spreaders. 
It is possible to make compressed truss elements in the shape proposed. In this 
way one can also shape simply supported columns in building structures. All 
the cited applications allow to significantly reduce the mass of the assembly 
in which the compressed bar elements occur. ripening. 
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