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A b s t r a c t  

In this paper, several analytical models are presented for the optimal design of a 
trapezoidal composite channel cross-section. The objective function is the cost function 
per unit length of the channel, which includes the excavation and lining costs. To define 
the system, design variables including channel depth, channel width, side slopes, 
freeboard, and roughness coefficients were used. The constraints include Manning’s 
equation, flow velocity, Froude number, and water surface width. The Simultaneous 
Perturbation Stochastic Approximation (SPSA) algorithm was used to solve the 
optimization problem. The results are presented in three parts; in the first part, the optimal 
values of the design variables and the objective function are presented in different 
discharges. In the second part, the relationship between cost and design variables in 
different discharges is presented in the form of conceptual and analytical models and 
mathematical functions. Finally, in the third part, the changes in the design variables and 
cost function are presented as a graph based on the discharge variations. Results indicate 
that the cost increases with increasing water depth, left side slope, equivalent roughness 
coefficient, and freeboard. 
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1. INTRODUCTION 

The optimal design of a channel cross-section reduces the cost along the channel. 
The optimal geometric dimensions of a channel’s cross-section are determined 
such that the cost of channel construction is minimized and the flow passing 
through it is maximized [1]. The design of a composite channel cross-section with 
various sides and bed lining materials is less expensive than a simple cross-section 
[2,3]. Guo and Hughes [1] considered the freeboard as an input parameter to 
optimize the trapezoidal channel cross-section. Loganathan [4] optimized the 
parabolic canal by considering the freeboard and limits of velocity and geometric 
dimensions of the cross-section. An open channel cross-section with the least area 
or maximum velocity is the most economically efficient because of requiring the 
least amount of excavation and minimum lining area [5]. In all the above studies, 
the uniform roughness coefficient was considered along the bed and sides of the 
channel cross-section. In channels where the roughness coefficients of the bed and 
sides are different, an equivalent roughness coefficient is considered for uniform 
flow calculations [2]. Das [3] optimized the cross-section of a trapezoidal 
composite channel using the Lagrange multiplier method. The objective function 
consisted of the channel construction cost (excavation and lining costs) per unit 
of channel length, and constraints included the Manning’s equation and positive 
values of the design variables such as channel depth and width. Horton’s equation 
was applied to calculate the equivalent roughness coefficient. Swamee et al. [6] 
designed the optimal shape of the open channel cross-section with the objective 
function of the channel construction cost including excavation and lining costs 
and water loss. Babaeyan-Koopaei et al., [7] using the Lagrange multiplier 
method, showed that the Parabolic-bottomed triangle canal cross-section, when 
compared to trapezoidal and parabolic cross-sections, has a lower cross-sectional 
area, and a wetted perimeter for the same and specific values of discharge, bed 
and side slopes, and roughness coefficients. As a result, the excavation and lining 
costs of this cross-section are lower. Therefore, the parabolic-bottomed Triangle 
cross-section is more economical than the trapezoidal and parabolic channels. Jain 
et al. [8] applied Lotter’s equation to calculate the equivalent roughness 
coefficient in Manning’s equation. The advantage of Lotter’s equation compared 
to Horton’s is that the velocity varies in channel bed and sides that have different 
roughness coefficients. The Optimization was performed by a genetic algorithm 
(GA). Chahar [9] presented the optimal parabolic cross-section design equations 
without considering the freeboard. These equations were used to minimize the 
excavation and lining costs and were obtained in an explicit shape using the 
Fibonacci search method. This researcher also used non-dimensional parameters 
for simplifying the model and presented graphs for these parameters. 
Bhattacharjya [10] presented the optimal design of a trapezoidal composite 
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channel cross-section using the SQP algorithm with respect to the freeboard and 
safety factor. Since changes in water depth lead to specific energy changes in the 
channel, this author considered freeboard changes based on specific energy 
changes and used a safety factor to investigate the impact of other factors on water 
surface fluctuation. Bhattacharjya [11] designed the optimal stable trapezoidal 
composite cross-section considering the safety factor as a criterion for the side 
slope stability. Reddy and Adarsh [12] optimized the cross-section of a trapezoidal 
composite channel by considering the effect of uncertainty analysis and the 
probability concept using the GA and PSO heuristic algorithms. Roushangar et al. 
[13] designed the optimal trapezoidal channel cross-section using the GA 
algorithm. They investigated the effect of different constraints such as flow depth, 
top width, Froude number, and the flow velocity separately. Gupta et al. [14] 
presented the optimal design of a composite trapezoidal cross-section that moves 
sediment carrier flow in different scenarios using freeboard (constant value and 
depth-dependent), taking into account minimum cost and maximum hydraulic 
efficiency. Han et al. [15] used the Lagrange Multiplier optimization method to 
obtain the most economic section. 
Different evolutionary methods, namely the bat algorithm (BA), particle swarm 
optimization (PSO), and their hybrid (HBP), are employed for the design of 
trapezoidal open-channel cross-sections studied in [16]. The results indicated that 
using HBP, compared to BA, PSO, LINGO, the Lagrange multiplier method, and 
the shuffled frog-leaping algorithm, led to a 32% saving in construction cost. 
Therefore, HBP has a high potential for the optimal design of open channels. 
Saplioglu et al. [17] proposed an optimal design for a trapezoidal cross-section by 
changing the discharge and slope angle. At a constant slope angle, with increasing 
discharge, the cost, bed-width, and height increase. Also, for a constant discharge, 
the cost and bed-width increase, and the height decreases with increasing slope 
angle. In this paper, the optimization of a trapezoidal composite channel cross-
section is presented more comprehensively as conceptual and analytical models 
and mathematical functions based on discharge variations. The optimal design of 
the channel cross-section is determined such that the required discharge passes 
through it, and the construction cost is minimized. 
The difference between the present study and previous works is the optimal design 
of the trapezoidal composite channel cross-section based on conceptual and 
analytical models and mathematical equations. 
In this regard, considering roughness coefficients as design variables, and a 
complete set of constraints as well as examining the relationship between design 
variables and cost function in different discharges, are among the innovations of 
this study. 
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2. COMPOSITE CHANNEL DESIGN 

2.1. Channel geometric equations 
When the roughness coefficient is different for each part of the wetted perimeter, 
an equivalent roughness coefficient is used in Manning’s equation [2]. Generally, 
the construction cost of open channels is lower for a composite channel. Figure 1 
shows the cross-section of a trapezoidal composite channel. The geometric 
parameters of the channel are presented in Table 1. 

 
Fig. 1. The geometry of a trapezoidal composite channel cross-section 

 

As shown in Figure 1, 1:,1: 21 zz representing side slopes, 321 ,, nnn  are 

Manning’s roughness coefficients at the sides and bed of the channel, b is the 

channel width, y is the flow depth, f is the freeboard, and 0s
 is the longitudinal 

bed slope.  
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where tA  and tP  are the total channel area and perimeter, respectively; tT is the 

total top width of the channel cross-section; wA
and wP

are the channel wetted area 

and perimeter, respectively; wT
is the water surface width, 1wP , 2wP , and 3wP

 are 
wetted perimeters corresponding to the right and left side slopes and bed of the 
channel, respectively; 1tP , 2tP , and 3tP are perimeters corresponding to the right 
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and left side slopes and bed of the channel, respectively; wR
 is the hydraulic 

radius; and D is the hydraulic depth. Parameters y, b, z1, z2, and f are defined in 
Figure 1. 

2.2. Uniform flow design equations for the trapezoidal composite channel 
Eqs. (2.15-2.18) are presented to design a uniform flow for a trapezoidal 
composite channel. In this study, Horton’s equation was applied to calculate the 
equivalent roughness coefficient [18]. The assumptions of this method are as 
follows: a) The velocity in each of these component areas is equal to the total flow 
mean velocity; b) The sum of the component areas is equal to the total flow area; 
and c) The bed slope of each component is equal to the average channel bed slope. 
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where ne  is the equivalent roughness coefficient based on Horton’s equation, 
Q  is the discharge based on Manning’s equation for uniform flow, V is the flow 

velocity, and rF is the Froude number. 

3. THE COMPOSITE CHANNEL OPTIMIZATION METHOD 

In this paper, it is aimed to provide the optimal design for a trapezoidal composite 
channel cross-section to minimize construction costs under uniform flow 
conditions, subcritical flow, flow with permissible velocity, and to have 
permissible water surface width based on design variables, including water depth, 
channel bed width, Manning’s coefficients, cross-section side slopes, and 
freeboard. 
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3.1 Design variables 
According to the geometric model described in Figure 1, the design variables, 
their descriptions, and their minimum and maximum values are given in Table 1. 

Table 1. Representation of design variables 

RX  LX  Design variables unit iX  

15 2 Depth of flow m yx 1
 

20 3 Channel bed width m bx 2
 

2 0.2   Channel right side slope - 13 zx 
 

2 0.2 Channel left side slope - 24 zx   

0.05   0.009 
Roughness coefficient value corresponding 
to the right side of the channel 

- 15 nx   

0.05   0.009 
Roughness coefficient value 
corresponding to the left side of the 
channel 

- 26 nx   

0.05  0.009 
Roughness coefficient value 
corresponding to the bed of the channel 

- 37 nx   

1.5 0.3 Freeboard m fx 8  

3.2 Constraints 

3.2.1 Development of uniform flow 
The lining channel is designed to conduct uniform flow [19]. Therefore, in this 
study, Manning’s equation constraint is used to control uniform flow. 
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3.2.2 Development of subcritical flow 
Also, due to the unstable flow in critical conditions, it is necessary to consider the 
Froude number constraint in order to avoid the development of critical flow in the 
optimal design of the channel [10]. In this study, the maximum value of the Froude 
number is considered to be 0.7. 
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3.2.3 Water surface width 
In the optimal design of the trapezoidal channel cross-section, the constraint of 
water surface width is one of the important constraints [3, 8]. Reddy and Adarsh 

[12] considered the maxT
 value to be 7 m for the uniform roughness coefficient 

and 8 m for the non-uniform roughness coefficient. The maximum permissible 
depth is 3.5 m. 

01
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T

Tw  (3.3)

3.2.4 Minimum velocity 
The minimum permissible velocity for preventing sedimentation is in the range 
0.6 to 0.9 m/s, and the minimum velocity for preventing vegetation growth is 0.75 
m/s [2]. Swamee et al. [17] considered the minimum permissible velocity of the 
channel design in the range 0.75- 0.9. 
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3.2.5 Maximum velocity 
In channels with rigid boundaries, the maximum permissible velocity (VL) is the 
velocity that does not cause erosion. Moreover, to ensure the conveyance of the 
discharge through the cross-section, the mean actual flow velocity in the channel 
should not exceed the maximum permissible velocity [8]. In this study, the 
minimum and maximum velocity values are 0.75 and 4 m/s, respectively. 
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3.3 Objective function 
In this study, the objective function is the total construction cost of one metre of a 
channel, including excavation (cross-sectional area) and surface lining (wetted 
perimeter) costs. The cost function is as follows: 

342312132111cos ),,,,,,,( ttttt PCPCPCACfnnnzzbyf   (3.6)

where 1C is the cost per unit area for cross-sectional area, 2C  is the cost per unit 

length for the right side slope of the channel, 3C  is the cost per unit length for the 

left side slope of the channel, 4C  is the cost per unit length for the bed width of 

the channel, and tA
, 1tP , 2tP , and 3tP are according to formulas 1, 10, 11, and 12, 

respectively. The specified values for the four cost elements, i.e., 4321 ,, CandCCC

, are 0.6, 0.2, 0.25, and 0.3, respectively [3]. 
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4. OPTIMIZATION ALGORITHM 

The SPSA algorithm is a powerful algorithm for optimizing complex systems, 
developed by Spall in 1998. One of the features of the SPSA algorithm is that in 
each optimization iteration, irrespective of the number of design variables, it only 
requires twice the objective function evaluation. Therefore, using this algorithm 
greatly reduces the computations and the total optimization time [18]. The SPSA 
is a powerful algorithm in solving civil engineering problems, especially in arch 
dam optimization [21-23].  

 
Fig. 2. The flow chart for the SPSA algorithm 

The SPSA algorithm is used for optimizing unconstrained problems, therefore, to 
use it for solving constrained problems with inequality constraints

),...,1(  0 mjg j  , it is necessary to replace the quasi-objective function w  

obtained by the external penalty function method with the objective function f : 
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pr
is a penalty multiplier. The flow chart of the SPSA algorithm for the channel 

optimization problem can be seen in Figure 2. 

5. OPTIMAL DESIGN STEPS 

Based on the equations presented, the optimal trapezoidal composite channel 
cross-section is optimized as follows: 

1. First, according to Table 1, values are randomly assigned to design 
variables from the defined range. 

2. The constraints of Eqs. (3.1 to 3.5) are calculated for a constant discharge 
and bed slope. 

3. The cost and quasi-cost functions are obtained by Eqs. (3.6) and (4.1). At 
this step, if the number of permissible optimization iterations is 
terminated, the program will stop. Otherwise, steps 2 to 5 should be 
repeated. After the end of the program, the optimal solution is the one that 
the lowest value of the objective function obtained during the 
optimization process for which all constraints are also satisfied. 

4. For each constant discharge value, 20 successful runs of the optimization 
algorithm were considered. 

5. At each time, the optimal values of each of the design variables, objective 
function, and constraints are compared with other times, from which a 
series of conceptual models are obtained. The point is that the top 5 
conceptual models are the same for all discharge values. 

6. For each specified discharge, three categories of analytical models were 
determined based on the minimum p-value, the maximum coefficient of 
determination, the minimum error sum of squares, and the minimum AIC 
(Akaike Information Criterion). In the first category, the objective 
function was considered as the dependent variable and the design 
variables were selected as independent variables. In the second group, 
design variables and constraints were used as independent variables. In 
the third category, an analytical model was created between the objective 
function and each design variable. The first and the second categories are 
referred to as multivariate regression models and the third category as 
univariate regression models.  
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6. RESULTS 

In this paper, a series of conceptual and analytical models are presented for the 
optimal design of a trapezoidal composite channel cross-section. Table 2 
compares the Das method [3] with the proposed SPSA Model of the present study. 
The sum total construction costs in both methods for the Model are 22.954 and 
23.731, respectively. 

Table 2. Optimum results for trapezoidal channels design (Das (2000) model and SPSA 
model) 

Parameter Das(2000) SPSA model 
y(m) 4.052 4.889 
b(m) 5.826 5.550 
Z1 0.247 0.236 
Z2 0.265 0.254 

f(m) 0.5 0.306 
Fr 0.581 0.527 
V 3.596 3.269 

Cost 22.954 23.731 
 
The optimization process was performed with different discharge values (50, 100, 
200, 300, 400, 500, and 600 m3/s). For each discharge value, 20 runs of the SPSA 
optimization algorithm were considered, which are referred to as successful 
projects. The zero-convergence condition of the penalty function was also 
considered. For each run, the maximum number of iterations was set as 12,000. In 
Table 3, a set of conceptual models is presented to show a significant relationship 
between design variables and construction cost. These conceptual models were 
obtained by comparing the optimal values of each of the design variables, the 
objective function, and the constraints at each time with the other times. The most 
important point in this section is that the top conceptual models that have the 
highest number of iterations are the same for all the discharge values, indicating 
the effective correlation between the objective function and the design variables 
and constraints in these analytical models. The positive and negative signs in these 
models indicate an increase and decrease in the variables affecting the channel 
construction cost, respectively. 
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Table 3. Presentation of the best conceptual model based on the dependent variable and 
independent variables 

The best conceptual model )(
3

s

m
Q  
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...  
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..

..

1

2  
500 

  fnzzbyCost e ,,,,, 21
 Cost
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fnzb e 
1

2

.

...  600 

 
Table 4 shows three top conceptual models for each discharge with the frequency 
of their iterations. As can be seen, some models are identical at different discharge 
values. 
Among the conceptual models shown in Table 4, the conceptual model 

Cost
zb

fnzy e 
1

2

.

...  is more frequent compared to the other models at different discharge 

values. Therefore, the above conceptual model was used to show the changes in 
the channel construction cost with design variables and constraints as 
mathematical models. According to the above equation, the cost increases with 
increasing water depth, left side slope, equivalent roughness coefficient, and 
freeboard. In contrast, a significant reduction in the channel bed width and right 
side slope reduces the channel construction cost. 
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Table 4. Presentation of the top three conceptual models based on the dependent variable 
of cost and independent variables 

)(
3

s

m
Q  The top three models with their frequencies in 20 runs of the 

optimization algorithm with 12,000 iterations for each discharge 

50Q  

Number 
of Eq 25 28 41 
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z
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.
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In Table 5, the cost equations are presented based on the design variables for each 
specified discharge. To evaluate the efficiency of the above equations, the criteria 
standard error of estimate, coefficient of determination, and p-value were used in 
this study. For each specified discharge value, more than 30 mathematical models 
were investigated between the channel construction cost and the design variables. 
Finally, for each specified discharge, a model was selected that has the lowest p-
value, the highest value for the coefficient of determination, and the minimum 
error sum of squares. 
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Table 5. Presentation of cost equations based on design variables for each specified 
discharge 

Q 
(m3/s) 

Eq SSE R2 P-value 
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1
01473.0

03926.00011.0
2

8044.0
2784.1 .10

fZb

neZy
Cost




  0.0000512 100 0.01 

 
In Table 6, mathematical models of channel construction cost are presented based 
on design variables, Froude number, flow velocity, and channel depth for each 
specified discharge. In this table, the coefficient of determination, 
standard error of estimate, and AIC were used to evaluate the equations. For each 
specified discharge value, more than 30 mathematical models were evaluated and, 
finally, a model was selected with the minimum error sum of squares and the 
highest value of the coefficient of determination. The p-value shows that with 99% 
certainty, all the models are acceptable. R2 and SSE values represent a high 
correlation between cost and design variables, Froude number, flow velocity, and 
channel depth for each specified discharge. 
 
In Table 7, for different discharge values, a mathematical model is presented 
between the channel construction cost and each of the design variables. These 
models were selected based on the minimum error sum of squares, the maximum 
value of the coefficient of determination, and the minimum value of the AIC. The 
Result shows that all the models are acceptable. R, R2, SSE values, and AIC 
represent a high correlation between cost and each of the design variables. 
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Table 6. Presentation of cost equations based on design variables and parameters of 
Froude number, flow velocity, and channel depth for each specified discharge 

Q 
(m3/s) 

Eq SSE R2 P-value 

50 04048.0)(

)(
2705.1

10

10
10

21

f
Cost

VFrneb

HZZy







 0.0000258 100 0.0083 

100 
0502.002827.0

1
03454.0)(

00705.0
2

1711.0)(
7934.3

10

10
10

fZb

ZH
Cost

VFr

ney









 0.0000921 

 
100 0.049 

200 
neZ

HfZy

VFr

b
Cost









2

1

10

10
.10

6838.00812.0

00091.0
3754.1  

0.0000393 100 0.0434 

300 VZby

Hf

FrZne

b
Cost









110

10
.10

0522.000283.0
2

00292.0

00091.0
5526.2  0.0000447 

 
100 0.0227 

400 01490.002247.00618.0
1

2719.00669.01139.100376.0
2

00335.0
6759.3 10

.10
HFrZ

VfneZy
Cost

b




  0.0000363 100 0.0013 

500 0507.00038.0
2

00476.0
1

01694.0
0481.2

10

10
.10

VZZ

f
Cost

Frb

Hney








 0.0000107 100 0.0000 

600 
1461.005661.000137.001211.001772.0

1

02413.00007.0
2

01323.01004.1
5795.12 .10

VHFrfZ

neZby
Cost




 0.0000137 100 0.1000 

 

Table 7. Presentation of the three top conceptual models based on the dependent variable 
of cost and each independent variable 

Q(m3/s)  Eq SE R2 AIC 

50 

y 23.8032.0)/7.1619( 2  XX
 0.0000 1.0000 -205.161 

b 25.711.0)/4.319( 2  XX
 0.0000 1.0000 -206.570 

Z1 72.5/110413 )1091.2(1028.3 XX    0.0000 1.0000 -212.007 

Z2 136.0051.0/15.370 2  XX  0.0000 1.0000 -219.716 

ne ))19.22/()017.0((041.0 84.3184.3184.31   XX 0.00035 0.9992 -57.583 

f 077.1/1))4.41/077.1(1(14.0  X
 0.0000 1.0000 -211.799 

100 

y )ln(0147.0)ln(465.0803.0/(1 3XX   0.0219 0.9997 -32.753 

b 38.7101031.972.255.5
 Xe  0.1104 0.9974 -0.0755 

Z1 ))78.15/()83.111((249.0 154.9154.9154.9   XX 0.0659 0.9764 -5.231 

Z2 05.38/()393.1((256.0 46.1646.1646.16   XX 0.0159 0.9998 -19.10 

ne ))416.40/()0309.0((0164.0 989.3989.3989.3 XX   0.00092 0.9909 -89.806 

f Xe /08.6507.5   0.16028 0.8599 -28.927 

200 

y 96.0/1))51.122/96.0(1(218.4  X
 0.0000 1.0000 -198.74 

b 353.1/1))3.961/535.13(1(578.6 X  0.0000 1.0000 -192.289 

Z1 779.55/()348.0((270.0 313.28313.28313.28   XX 0.0000 1.0000 -298.984 
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Z2 719.1639.3)/0929.1( 2  XX
 0.0000 1.0000 -215.375 

ne ))371.54/()0245.0((0194.0 298.9298.9298.9 XX   0.00025 0.9995 -88.023 

f ))948.64/()348.0((052.0 601.45601.45601.45 XX   0.00704 0.9994 -27.595 

300 

y 826.61410364.1319.17968.23 Xe
  0.0000 0.9571 -1.449 

b ))765.86/(1/(491.9 483.6X  0.0000 1.0000 -201.742 

Z1 )948.64/()719.0( 882.12882.12882.12   XX
 0.0000 1.0000 -217.637 

Z2 ))791.82/()929.0((202.0 16.12816.12816.128 XX  0.0000 1.0000 -298.984 

ne 119.78/()0176.0((0411.0 52.2952.2952.29   XX 0.00151 0.9820 -66.517 

f ))065.78/()665.0((306.0 52.15452.15452.154 XX   0.0000 0.9914 -23.983 

400 

y )000021.0011.01/()0593.089.6( 2XXX   0.0000 1.0000 -228.789 

b ))264.5/()264.5((672.3 09.11109.11109.111   XX
 0.0000 1.0000 -266.247 

Z1 399.2/1))09.298/399.2(1(428.1 X  0.00135 0.9968 -37.566 

Z2 ))264.5/()264.5((672.3 09.11109.11109.111   XX
 0.1105 0.9792 -0.0735 

ne 326.83/0106.0 Xe
 0.00157 0.9546 -63.788 

f ))311.86/()6501.0((3529.0 85.1485.1485.14 XX   0.0000 1.0000 -283.417 

500 

y )978.20666.0cos(533.2212.11  X  0.0000 1.0000 -271.258 

b 16.275285.60495.0000132.0 23  XXX  0.0000 1.0000 -228.248 

Z1 )599.123/()957.0( 524.6524.6524.6   XX
 0.0000 1.0000 -214.741 

Z2 729.50868.000026.0 2  XX  0.1636 0.8841 -17.882 

ne ))151.108/()01242.0((0401.0 738.27738.27738.27   XX 0.00125 0.9860 -44.849 

f 118.31898.00085.0000027.0 23  XXX  0.0000 1.0000 -247.123 

600 

y 292.100591.000051.0 2  XX  0.0000 1.0000 -171.547 

b )691.1384/1(775.968.1133 )1/(151.12 Xe   0.0000 0.9753 -13.142 

Z1 )130.32/()06.379( 271.5271.5271.5   XX
 0.0000 0.5344 -7.858 

Z2 )598.111/()972.0( 890.58890.58890.58 XX   0.0000 1.0000 -211.786 

ne 031.20681.000867.0108913.41003.1 23547   XXXX  0.0000 1.0000 -298.074 

f )836.3/1()094.533/836.31/(335.0  X
 0.0000 1.0000 -203.806 

 
Figure 3 presents the correlation between the cost function and the values of the 
design variables at different discharge values. In fact, these graphs represent the 
mathematical models of Table 7. The channel construction cost increases with 
increasing water depth, channel left side slope, equivalent roughness coefficient, 
and freeboard on the one hand, and with decreasing channel width and channel 
cross-section right side slope on the other hand. This process is the same in 
different discharge values. 
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Fig. 3. Illustration of cost graphs and design variables for a specified discharge 

7. CONCLUSION 

In this study, the optimal design for trapezoidal composite channel cross-sections 
was prepared with different discharge values by presenting both conceptual and 
analytical models. The channel construction cost was considered as the objective 
function. Depth of flow, channel width, side slopes, side and bed roughness 
coefficients, and freeboard were considered as design variables. In addition, 
Manning’s equation, Froude number, water surface width, and flow velocity were 
considered as constraints. The SPSA optimization algorithm was applied to 
optimize the trapezoidal channel cross-section with 12,000 iterations and a zero 
convergence condition of the penalty function. For each discharge value, the three 
top conceptual models were selected. Finally, the conceptual model of 

Cost
zb

fnzy e 
1

2

.

...  extracted at all discharge values was selected as the top 

conceptual model and was considered as the basis of the mathematical models for 
the optimal channel design. Then, the mathematical models of channel 
construction cost are presented based on design variables, Froude number, flow 
velocity, and channel depth for each specified discharge. Also, for different 
discharge values, a mathematical model is presented between the channel 
construction cost and each of the design variables. 
At different discharge values, evaluation criteria were considered for selecting the 
best analytical models of the p-value, error sum of squares, coefficient of 
determination, and AIC. Construction cost increases with increasing water depth, 
channel left side slope, equivalent roughness coefficient, and freeboard and with 
decreasing channel width and channel cross-section right side slope. This process 
is the same in different discharge values. 
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