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A b s t r a c t  

This study evaluates the movement of a frame built on soft soil under seismic excitation 
taking into account soil-structure interaction. First, the study was evaluated using the finite 
element method, then, by using a substructure method which modelled the soil using 
springs and dampers in a linear and nonlinear study. Rheological models were determined 
using impedance functions, calculated using a numerical program CONAN. These 
dynamic impedances are shown in the displacement vector of a three-degrees-of-freedom 
frame, which was calculated on the basis of lateral forces distributed over the structure 
height using the equivalent static method. In this regard, two different calculation norms 
were chosen; RPA2003 and UBC97. Finally, a parametric study was carried out, based on 
the effects of soil densification and the foundation geometry on the response of the RC 
frame. 
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1.  INTRODUCTION 

Dynamic soil-structure interaction is characterized by impedance functions that 
should be studied during the design of buildings and structures [1]. These dynamic 
impedances are considered as the main core in the dynamic calculation of 
structures. They denote the motion of a foundation subjected to a harmonic 
(seismic) load in the different translational and rotational degrees of freedom to 
ensure its proper functioning.  

The importance of impedance functions in the dynamic calculation and their role 
in the rheological modelling of springs and dampers that drive motion in a 
particular direction, explains their use by several authors as being a necessary tool 
in the dynamic calculation. For instance, Lamb (1904) [2] studied the vibrations 
of a semi-finite linearly elastic medium under concentrated harmonic load. 
Reissner (1936) [3] analyzed the response of a disk placed on the surface of an 
isotropic and semi-finite elastic medium. This analysis revealed an energy 
dissipation by radiation as if the propagation medium has some damping 
characteristics. Based on these results, Sung (1953) [4] extended the works of 
Reissner to six degrees of freedom of foundation motion. The idea of comparing 
soil-foundation systems in vertical translation to a simple oscillator of constant 
stiffness and damping was first introduced by Lysmer (1965) [5]. This approach 
is commonly designated as a “Lysmer analogy” (see Figure 1). Early 1970 
witnessed a further development in impedance calculation methods by presenting 
the results in the form of two parts, one real and the other imaginary, depending 
on the frequency. This includes impedance and displacement functions. 
 

 

 

 
Fig. 1. Vertical impedance of a foundation 
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Impedance functions are primarily linked to the foundation geometry, soil type, 
vibration mode as well as to the harmonic excitation [6]. They denote the response 
of a foundation under a harmonic load in a particular direction. Impedance 
functions represent a complex formula, which associates the independent static 
stiffnesses to the dimensionless frequency with a complex frequency number, 
helping to determine the exact magnitudes of the rheological models perfectly 
embedded [7]. 

One aspect of soil-structure interaction is damping which may occur due to the 
dynamic interaction at the soil-foundation interface. This damping may occur in 
different ways: soil-foundation contact, hysteretic behavior of the soil, or seismic 
waves radiation. In the literature, two types of damping can be observed, one is 
material corresponding to dissipation in the form of heat in the vicious materials 
determined using the nonlinear Kelvin-Voigt model [8], the other is geometric, 
and may be interpreted as the result of a transmission to the infinity of a part of 
the strain energy by radiation of seismic waves. It is defined using the imaginary 
part of dynamic impedances [9].  

The behavior of the structures under seismic effect is mainly linked to the type of 
seating soil, in which the response of the structure change if the stiffness of the 
soil decreases [10]. Soil densification technique by compaction consists of 
improving soil mechanical properties by transmitting high-energy impacts into 
soft soils with low bearing capacity and high compressibility potentials. The 
impact creates body and surface waves which propagate through the soil. In the 
unsaturated soils, the waves move the grains and rearrange them in a denser way. 
In the saturated soils, the soil is liquefied and rearranged in a more compact state. 
In both cases, the reduction in voids and the increase of internal granular contact 
improved soil properties [11]. 

In the literature, several authors were interested in the dynamic calculation of 
structures under different soil conditions. For example, Edip et al. [12] analyzed 
the effects of soil on the frame responses using the finite element method under 
the impact of boundary type. Jaber et al. [13] applied the mohr-coulomb model to 
study the plastic effects of the soil on the behavior of multi-story buildings. Ada 
and Ayvaz [14] analyzed the effect of soil-structure interaction on two adjacent 
frames using the finite element method, taking into account the non-linearity of 
the soil. Edip et al. [15] applied a numerical simulation of soil-structure interaction 
problems including damper effects. This new approach coupled finite and infinite 
computational methods. Our contribution in this area is to illustrate the effect of 
the soil on the frame responses, using dynamic impedances in both linear and 
nonlinear cases, in which a mathematical equation allowing the calculation of the 
motion vector of a three-degrees-of-freedom frame, considered free-field at the 
base, was developed. Dynamic impedances were calculated using the cone 
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method and CONAN software. On the other hand, the motion vector was 
dynamically calculated based on time and statically calculated by applying the 
equivalent static method. Then, we confirmed the presented method by applying 
the finite element method with absorbing boundaries. Finally, a parametric study 
was conducted to determine the effect of soil parameters and foundation geometry 
on the response of the structure.  

2.  DYNAMIC IMPEDANCE CALCULATION METHODS 

Dynamic impedances are considered a primary tool in calculating the response of 
foundations under harmonic excitations in their different directions. Many 
researchers are interested in calculating these dynamic impedances using different 
methods; numerical, analytical, and experimental [16-20].  

2.1. Analytical method “cone model”  
Mathematical calculation of impedance functions based on the application of the 
cone method on a foundation at a particular depth from the surface of the soil and 
subjected to harmonic loads for the six degrees of freedom. The Cone model 
substitutes the elastic half-space with a truncated cone that may be considered as 
an elastic beam with a variable section [21-24], as shown in Figure 2. 

 

 

 

 

Fig. 2. Model of cone 
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2.1.1. Horizontal impedance  

Figure 3 presents a disk resting on a lower bar. This disk (foundation) has a radius 

0r  and is subjected to a harmonic horizontal force 0P ; the resulting displacement 

is 0U  at the soil-disk interface. 

 

 

 
 

Fig. 3. A foundation subject to a horizontal force 

Shear stress   is given by the following formula:  

                                                   
A

Q
                                                          (2.1) 

zUAGQ ,..                                                   (2.2) 

Where, A: Surface of foundation, G: Shear modulus of soil, Q: Horizontal force, 
U: Horizontal displacement. 

The equilibrium of horizontal forces gives: 
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Substituting equation (2.2) into equation (2.3) gives: 
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Where,  : Density of soil;  : Frequency of excitation. 

Shear wave velocity sV  gives: 


G

Vs                                                         (2.5)

Then, the equation (2.4) becomes: 
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From Figure 4, we have:  

2
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Fig. 4. Explanatory schema of the cone model 

Where, Z : Depth of foundation;  : Angle.         

The equilibrium dynamic equation becomes: 
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We have: 

  zzzzz UUZUZ ,,, .2.   

Hence, equation (2.8) becomes:  
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Equation (2.9) is a second order equation of dynamic motion, which is solved as 
follows: 
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The solution to equation (2.11) gives: 














s

s

V

V





2

1

                                                (2.12) 

Then UZ is expressed as: 
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1A  and 1B  are constants defined by the boundary conditions, the solution to the 

dynamic motion equation U , is as follows: 
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The shear wave propagates in the direction 0z . Therefore, the second term 
will be neglected. 

Based on the cone model, we have: 
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Using equations (2.14) and (2.15): 
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Substituting the formula of 1A into equation (2.13) gives: 
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Otherwise, based on horizontal forces equilibrium: 
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Hence, the applied force formula becomes: 
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The formula of a dimensionless frequency is: 
sV

r
a 0

0

.
  Then, equation (2.17) 

becomes: 
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The formula of 0P  can also be expressed as: 
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The comparison of equations (2.18) and (2.19) gives: 
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The formula of static impedance sk , relative stiffness 1k , and relative damping 1c
is expressed as follows: 

)cot(

.. 0


 rG

k s                                                    (2.20)                        

01 ;1 ak                                                     (2.21)                     

01 );cot( ac                                                (2.22) 

2.1.2. Vertical impedance  

Figure 5 presents a foundation with a radius 0r , subjected to a harmonic vertical 

force 0R , and the resulting displacement is 0q  at the soil-disk interface.  
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Fig. 5. A foundation subject to a vertical force 

 
The vertical equilibrium equation gives: 
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Where, q : Vertical displacement,  : Vertical stress. 
 
Based on Hooke’s law: 

zqE ,.                                                     (2.24)                             

zzz qE ,, .                                                    (2.25)                 

Where, E : Young’s modulus of soil. 
 
Substituting equations (2.24) and (2.25) into equation (2.23), gives: 
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The velocity of longitudinal wave lV  gives: 
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Vl                                                     (2.26)                      

The equilibrium equation becomes: 
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We have: 
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Then, equation (2.28) becomes: 
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The solution of equation (2.29) gives: 
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The solution to the dynamic motion equation q  is given as follows: 
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1A and 1B  are constants defined by the boundary conditions 0)0( qq  , after 

applying the latter, the motion equation is expressed as follows: 
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We have: 
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From equation (2.33), the static stiffness sk , relative stiffness 1k , and relative 

damping 1c  formulae can be expressed as follows: 

)cot(
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
 rE

k s                                                  (2.34)                            

01 ;1 ak                                                    (2.35)                         

  01 );cot( ac                                               (2.36)                     

2.2. Numerical method “CONAN program” 
In this study, the calculation of horizontal, vertical, rocking, and torsional 
impedance functions was achieved using the cone method by means of CONAN 
software. This allows the calculation of stiffness and damping dynamic 
coefficients at one or multiple excitation frequencies for a selected degree of 
freedom. Where: ‘H’ is the horizontal degree of freedom, ‘V’ is the vertical degree 
of freedom, ‘T’ is the torsional degree of freedom, and ‘R’ is the rocking degree 
of freedom. 

3. DESCRIPTION OF REFERENCE MODEL 

3.1. Model of structure 
The structure is a three-floor reinforced 
concrete frame; each floor has a 5m long 
span with a section of 40x70 cm2. 
Column height is equal to 4 m ( ml 4 ) 
with a section size of 40x40 cm2. The 
structure rests on footings with square 
sections 2x2 m2 (Figure 6). The 

5.0 m 

4.
0×

3=
12

.0
 m

 

Fig. 6. Dimensions of the structure 

L 1 

L 2 

L 3 
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characteristics of the concrete material 
in the structure are given in Table 1.    

Table 1. Parameters of structure 

 

 
 

3.2. Model of soil 
The soil under the structure has a dimension in 2-D of 70×10 m2 (see Figure 7). It 
is intended to be homogeneous with a linear elastic behavior and a damping 
coefficient  . It is characterized by its density   and behavior parameters as 

follows: shear modulus G , Poisson ratio  , and shear wave velocity sV . The 

values of these parameters are provided in Table 2. 

Table 2. Parameters of soil 
 

 

 

The shear modulus G and elasticity modulus E  of the soil are calculated as 
follows: 

2
sVG                                                     (3.1)                    

  12GE                                             (3.2) 

 
Fig. 7. Dimensions of soil under structure in 2-D 

c  (kN/m3) ckf (MPA) cE (MPA) ν ξ 

25 35 25000 0.2 0.05 

sV  (m/s)   (kN/m3) ν ξ 

300 20 0.3 0.05 
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3.3. Seismic excitation 

The seismic load given for time analysis consists of several components of El-
Centro earthquake acceleration. Figure 8 shows acceleration change in accordance 
with the different periods of the earthquake that had hit California on May 18, 
1940.  

 
Fig 8. El-Centro accelerogram [25] 

4. RESULTS AND ANALYSIS 

4.1. Dynamic impedance calculation 

The impedance functions of a foundation resting on a semi-finite, viscoelastic, 
homogeneous, and isotropic medium were calculated. Figures 9 to 12 show the 
variation of real and imaginary elements depending on the dimensionless 

frequency 0a  for the four degrees of freedom < H; V; T; R >. 

The stiffness coefficient remains at a constant value for the translational degrees 
of freedom versus an increase in the dimensionless frequency a0; however, in 
terms of torsional and rocking degrees of freedom, a relatively small decrease in 
this value was observed. 
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The value of the damping coefficient is nil when the dimensionless frequency is 
equal to zero for the four degrees of freedom. In this case, there is no energy 
dissipation in the system. Afterwards, its value increased in the range from 0 to 
0.5 for degrees of translation, then remained constant in the range from 0.5 to 4. 
However, a proportionality between the damping coefficient and dimensionless 
frequency values was observed due to torsional and rocking motions. 

 
Fig. 9. Horizontal impedance versus the dimensionless frequency 

Fig. 10. Vertical impedance versus the dimensionless frequency 

Fig. 11. Torsional impedance versus the dimensionless frequency 
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Fig. 12. Rocking impedance versus the dimensionless frequency 

4.2. Calculation of the frame displacement taking into consideration soil-
structure interaction 
In the present study, the seismic response of a three-floor frame was evaluated 
based on its displacement, using two different methods. Firstly, the response was 
calculated by SAP2000 software using the finite element method (FEM), and 
secondly, by a mathematical method which uses the previously calculated 
dynamic impedances of the foundation. This method uses another method called 
“the equivalent static method” in order to determine the value of seismic force at 
the base and to allow its distribution over the frame height, in the form of 
concentrated lateral forces. 

4.2.1. Finite Element Method (FEM) 
The finite element method is considered as a method of solving the problem of 
the soil-structure interaction [26-28]. It involves breaking the domain down into 
finite elements limited by absorbent boundaries (see Figure 13). It is a method of 
discretization of the global functional into several functions related to each 
element. In each element, the unknown fields of displacement are represented by 
the Ritz method using a functional basis specific to each element, of which basis 
functions are referred to as interpolation functions. They were chosen in order to 
achieve continuity of the unknown fields while crossing the known boundaries of 
the elements. 
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4.2.1.1. Structure modelling 

The reinforced concrete superstructure was modelled as a monolithic structure 
with linear, elastic, and isotropic properties; it was discretized into several 
elements with a size of 50 cm. For the material, we used Rayleigh damping (5%) 
[29]. 

Rayleigh damping  C  allows linear combining of mass matrix  M  and structure 

stiffness  K  as follows: 

     KMC                                                 (4.1)                          

Where,   and   are two damping coefficients that can be calculated based on 

the coefficient, the first mode fundamental frequency 1 , and the last mode n  

[30]. 
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                                            (4.2)      

4.2.1.2. Soil modelling 
The soil model used in the numerical analysis has dimensions in 3D of 70×20×10 
m3, where soil is 10 times larger than the structure [31], in order to ensure free-
field movement. Soil is represented as a semi-finite domain, which requires the 
use of dampers at its boundaries to absorb seismic waves and avoid their 
reflection. The base of the soil is bounded by a rigid bedrock; therefore, soil 
displacement is disabled, and this allows the seismic load to be taken in terms of 
displacement time-history [32]. 

The numerical model discretized the soil domain into finite elements with the 
dimension h , which allows the propagation of the waves with a maximum 

frequency maxf  based on shear velocity of the soil sV . This can be calculated 

using the following equation:  

max. fn

V
h s                                                (4.3)                        

Where, n  is the number of elements by wavelength which may be adjusted from 
5 to 8 [33]. 

The soil was modelled as solid elements of 08 nodes of a size of 50 cm, with 
interface refinement for more accurate results. It had a linear behavior with 
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Rayleigh-type damping, estimated at 5% [34]. This type of damping is calculated 
from the fundamental frequency in the soil ω1 and from the whole number n, 
which multiplies the fundamental frequency. It can be expressed as follows:

DVs 2/.1   ;   . 12  n ; 1/sn  , where D is soil thickness and ωs is 

the fundamental frequency under seismic motion [35]. 

 
Fig. 13. Modelling soil-structure interaction by finite elements 

Displacement in the different frame levels by the finite element method is 
provided in Table 3. 

Table 3. Displacement at the three levels using FEM 

Level Displacements (cm) 

1 0.190 
2 0.350 

3 0.480 
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4.2.2 Substructure method 
In this study, a mathematical formula integrating the dynamic impedances of the 
foundation into the formula of motion vector of three degrees of freedom frame 
was developed, taking into account soil structure interaction, as shown in Figure 
14. 

 

 

 

 

 

Fig. 14. Three-degrees-of-freedom frame with a flexible base 

The displacement vector of the structure is represented as follows: 
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    (4.4)        

 
Where: 

 1  ; 2 ; 3 : Displacement at each floor; 

 1F  ; 2F ; 3F : Static forces on each floor; 

 1h  ; 2h ; 3h : Heights of static forces; 

 hK ; rK : Respectively represent horizontal translation impedance of the 

foundation along the X-axis, and rocking impedance around the Y-axis; 

 1K  ; 2K ; 3K : Column stiffness on the different floors of the frame: 
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Assuming that: KKKK  321 . Then, equation (4.4) becomes: 
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We take stiffness K out of the equation (4.6). The equation becomes:  
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After calculating the inverse matrix of structure stiffness, the displacement vector 
is as follows: 
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                    (4.8) 

Where, PI : Column inertia. 
Formula (4.8) provides a good illustration of impedance regarding the calculation 
of the displacement vector of a three-degrees-of-freedom structure considered as 
free-field at the base. In our case, the applied force consists of a seismic load 
variable through time. For our purpose, this force is distributed over the entire 
frame height in the form of a static force, as shown in Figure 15. 
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Fig. 15. Vertical distribution of the seismic load [36]         

 RPA 2003 code 

According to the RPA 2003 Code [37], the overall seismic force applied to the 
structure base is expressed by a mathematical formula based on the following 
parameters: zone acceleration coefficient (A), quality factor (Q), structure 
behavior coefficient (R), structure total weight (W), and average dynamic 
amplification factor (D).  

The overall seismic force at the base V is given by the following formula: 

W
R

QDA
V

..
                                                 (4.9)  

The total seismic force distribution based on the building height is expressed as 
follows: 
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j
jj

iit
i

hW

hWFV
F

1

                                            (4.10)              

Where, jW  and iW : Seismic weight at floor j and i; jh  and ih : Seismic load height 

at floor j and i; tF : Concentrated force at the top of the structure:

VTVFt 25.007.0  or .7.0:;0 sTifFt   

The fundamental period T  is given by the following equation: 
4/3HCT T                                                (4.11)                          

Where, H : Total structure height; TC : Coefficient based on bracing system and 
infill type. 



 

CALCULATING THE DYNAMIC IMPEDANCES OF FOUNDATIONS  
AND THEIR EFFECT ON THE SEISMIC RESPONSE OF STRUCTURES: ANALYTICAL 

AND NUMERICAL STUDY 

199 

 

 

  

 

The dynamic amplification factor D , based on site category, damping correction 
factor  , and structure fundamental period T , gives as follows: 
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                       (4.12) 

Where, 1T  and 2T : Characteristic periods associated with site category;  : 
Damping correction factor, given by the formula: 







2

7
                                                  (4.13)                       

Where, (%) : is the critical damping rate based on the constituent materials, 
structure type, and infill significant. 

In our case, the calculation parameters based on RPA2003 are summarized in 
Table 4, and displacement in each level of the frame, calculated using equation 
(4.8) and these parameters values, is provided in Table 5. 

Table 4. Parameters values based on RPA2003 

 

A R Q 
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T  
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T1  
(s) 

T2  

(s) 

% 

  D 
V  
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0.25 2 1.30 105 0.075 0.48 0.15 0.50 7 0.88 2.20 37.62 
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Table 5. Displacement in the three levels of the frame based on RPA2003 
 
 UBC97 code 

According to UBC97 (Uniform Building Code 97) [38], seismic force is laterally 
distributed over the height of the structure at each level. It is determined using the 
following formula: 
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                                            (4.14)

Where, xW  and iW : Seismic weight at floor x and i; xh  and ih : Seismic load 

height at floor x and i; V : Base shear specified by the formula :  

WCV S .                                                   (4.15)                  

Where, W : Total seismic weights; SC : Seismic response coefficient: 

e

DS
S IR

S
C                                                    (4.16) 

Where, eI : Seismic importance factor ensures a seismic force of a superior design 

for larger structures. The values of eI  mainly related to earthquake resistance 

design category divided into four occupational categories: 1eI  for category I 

and II; 25.1eI  for category III; 5.1eI  for category IV; R : Response 

modification factor, whose values generally range from 1 for the systems 
incapable of having a ductile response to 8 for the systems capable of responding 

in a highly ductile manner; DSS : Acceleration response for short periods: 

SaDS SFS
3

2
                                             (4.17)    

Where, SS : Spectral response acceleration for short periods; aF : Coefficient 

linked to site class indicates site soil related amplification effects on soil shaking 
energy for short (high frequency) and long periods (low frequency). 

1 35 4 140 0.167 06.270 0.189 

2 35 8 280 0.333 12.540 0.349 

3 35 12 420 0.500 18.810 0.450 
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In our case, calculation parameters based on UBC97 are summarized in Table 6, 
and displacement at each level of the frame calculated using the equation (4.8) 
and these parameter values, is provided in Table 7. 

Table 6. Parameters values based on UBC97 

Table 7. Displacement in the three levels of the frame based on UBC97 

The two codes RPA 2003 and UBC 97 allow the distribution of the seismic force 
over the structure using a method known as “the equivalent static method”. Each 
code has special calculation parameters depending on the type of the site and the 
structure being analyzed, in order to determine the value of the seismic load at the 
base and to distribute it over the structure height. Both codes gave close 
displacement values in the three levels of the frame, validating the efficiency of 
each code in the seismic analysis. 
Displacement at third level (top of the frame) based on both codes is considered 
to be at its maximum, which is very close to what has been found using the finite 
element method (see Figure 16). This shows the accuracy of the method used to 
calculate structure displacement under seismic excitation.  
  

Fa SS SDS R Ie CS W (kN) V (kN) 

1.2 0.75 0.6 2 1.25 0.375 105 39.375 

Level Wi (kN) hi (m) Wi.hi (kN.m) Cvi Fi = Cvi .V (kN) i  (cm) 

1 35 4 140 0.167 06.562 0.198 

2 35 8 280 0.333 13.125 0.365 

3 35 12 420 0.500 19.687 0.471 
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Fig. 16. Presentation of lateral displacement values using the two methods 

The distribution of the seismic charge found in the linear soil on the three levels 
of the frame by the method mentioned above can cause the lateral displacement 

of the mass of the corresponding floor im . This displacement varied linearly with 

the force applied by a slope iK , as presented in Figure 17. We can see that there 

is a proportionality between the applied force and the appropriate displacement. 

 
Fig. 17. Linear behavior of the frame in the three levels: (a) first level (b) second 

level (c) third level 

4.3. Nonlinearity effect on the response of the structure 
It is important to take into account the effect of damping of the soil in the dynamic 
analysis of foundations, which caused a decrease of dimensionless deflection [39]. 
In this part of the study, we tried to justify the effect of soil behavior on the 
response of a three-degrees-of-freedom frame taking into consideration the effect 
of the nonlinearity of the soil. It is well known that the rheological models are the 
only ones to have an influence on a structure’s lateral responses in the horizontal 
direction and on its rocking [40], as shown in Figure 18. 
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Fig. 18. Displacement components of a flexible base structure [41] 

Under dynamic loading, the foundation response must be strictly represented 
using a « springs + dampers » type analogical model (Kelvin-Voigt) in which the 
characteristics K(ω) and C(ω) depend on loading frequency, and these 
characteristics receptively constitute the real and the imaginary part of the 
dynamic impedances of the foundation. These two terms are given the physical 
meaning of a spring and a damper with the following characteristics: 
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                                             (4.18) 

Including damping in the calculation of the effect of the soil on the response of 
structure makes it possible to add another parameter to the elastic formula of frame 
lateral displacement. This parameter

c , in terms of time T , is associated with 

the displacement resulting from the horizontal damper 
hC  and rocking damper 

rC  

as follows: 

TF
C

h

C rh
c 








 .

1 2

                                    (4.19)  

The displacements in the three levels of the structure with and without damping 
are presented in the Figures 19, 20, and 21. 
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Fig. 19. Effect of damping on the lateral displacement at the first level of the frame 

 

 
Fig. 20. Effect of damping on the lateral displacement at the second level of the frame 
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Fig. 21. Effect of damping on the lateral displacement at the third level of the frame 

The effect of nonlinearity on the frame displacement is shown in Figures 19 to 21, 
minimizing displacement at the three levels of the frame. This effect is estimated 
at 31.28% at the first level, 33.83% at the second level, and 39.53% at the third 
level, thereby confirming that the impact of damping increases with height [42]. 

The effect of damping on the frame behavior is illustrated by the change in the 
linearity of the curve )( fF  at the three levels of the frame (see Figure 22). It 
could therefore be concluded that the response of the structure founded on a 
nonlinear soil exhibits a certain ductility under seismic loading. It is worthy of 
note, in this regard, that taking into account the nonlinearity of the interaction 
between the soil and the structure helps to limit the seismic action transmitted into 
the latter [43] 
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Fig. 22. The effect of damping on the frame behavior at the three levels: (a) first level (b) 
second level (c) third level 

4.4. Parametric study 
This part of the study deals with the effect of soil densification and the change of 
foundation radius on their dynamic response whose impedance functions were 
calculated using the CONAN program. It also deals with the effect of dynamic 
impedance on structure displacement using the substructure method previously 
proposed. 

4.4.1. Effect of soil densification on structure response 
Compaction techniques (also known as mass densification techniques) become 
widely used in significantly improving some soil characteristics [44, 45]. This 

technique particularly effects shear wave velocity sV  as well as soil density  , 

and causes a change in the class of the soil under consideration. The parameters 
used in changing soil class according to UBC97 are provided in Table 8. 
 
Table 8. Parameters of soil before and after compaction 

 

 

Condition of soil Class of soil SV  (m/s)   (kN/m3) 

Before compaction E 170 18 

After compaction D 185 20 

Before compaction D 300 20 

After compaction C 365 22 
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Fig. 23. Effect of soil densification on horizontal impedance 

  
Fig. 24. Effect of soil densification on vertical impedance 

Fig. 25. Effect of soil densification on torsional impedance 
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Fig. 26. Effect of soil densification on rocking impedance 

Figures 23 to 26 show the effects of soil improvement by densification on the 
variation of dynamic impedances based on the dimensionless frequency. The 
results obtained show the efficiency of soil densification; both the stiffness and 
damping are strongly affected by the latter. A considerable increase in stiffness 
and damping was noticed for all dynamic impedances. Therefore, compaction has 
a direct influence on soil damping and stiffness in a proportionate manner. The 
effect of soil densification on structure response is given in Table 9. 

Table 9. Displacement values at the three levels of the structure before and after 
densification of the supporting soil

Densification of the soil by compaction causes the decrease of lateral 
displacement of the structure in the three levels in an increasing way. According 
to Table 9, this effect varied according to the following points: 

 It is more important in the third level of the frame. Therefore, we can see that 
the effect of compaction of soil on the lateral displacement of the structure is 
more important according to the height of the latter. 

 It is more important in D-C soil, better than in E-D soil, because of the 
difference in shear wave velocity found before and after compaction, which is 
considered greater in the D-C soil type. 

 It is more important in the UBC97 norm than in the RPA2003, because the 
former allows classification of the soils studied before and after compaction, 
according to their shear wave velocity at two sites that have calculation 

Condition of soil 
E-D 

before 
E-D 
after 

D-C 
before 

D-C 
after 

Displacement at 
level 1 (cm) 

RPA2003 0.243 0.242 0.189 0.188 

UBC97 0.210 0.200 0.198 0.181 

Displacement at 
level 2 (cm) 

RPA2003 0.456 0.453 0.349 0.347 

UBC97 0.374 0.370 0.365 0.333 

Displacement at 
level 3 (cm) 

RPA2003 0.610 0.599 0.450 0.446 

UBC97 0.500 0.490 0.471 0.428 
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parameters that differ (E-D before: class E; E-D after: class D; and D-C before: 
class D; D-C after: class C). On the other hand, the latter classified the soils 
studied before and after compaction on the same site (E-D before and after: 
class S4; D-C before and after: class S3), that is to say, the soil before and after 
compaction has the same calculation parameters. Therefore, the difference in 
displacements does not appear significant. 

4.4.2. Effect of foundation radius on the structure response 
In this section, foundation radius will be changed from 1.13m to 0.85m and 0.56m. 
Figures 27 to 30 present the effect of foundation radius in the variation of 
dynamics impedance for the four degrees of freedom using the same calculation 
methods of impedance functions previously presented.  

Fig. 27. Effect of foundation radius variation on the values of horizontal impedance 
 



 
210 Radhwane BOULKHIOUT, Salah MESSAST 

 

 

Fig. 28. Effect of foundation radius variation on the values of vertical impedance 
 

Fig. 29. Effect of foundation radius variation on the values of torsional impedance 

 
Fig. 30. Effect of foundation radius variation on the values of rocking impedance

 
The results obtained show that foundation radius (foundation geometry) is an 
important parameter in infrastructure design. Impedance functions in terms of 
stiffness and damping are strongly influenced by foundation radius; a considerable 
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decrease in stiffness and damping was marked in Figures 27 to 30 for the four 
degrees of freedom. The decrease in stiffness and damping is proportionate to the 
decrease in foundation radius. The effect of foundation radius on structure 
response is given in Table 10. 

Table 10. Displacement values at the three levels of the structure depending on the 
variation of foundation radius 

 
The effects of foundation design on the response of the structure are shown in 
Table 10, in particular at the third level, which demonstrate the existence of an 
inverse proportionality between structure displacement and increasing foundation 
radius.  

5. CONCLUSIONS 

The work presented attempted to illustrate the effect of soil on the response of a 
multistorey frame through dynamic impedance in both linear and nonlinear cases 
by developing a substructure method in which the horizontal and rocking dynamic 
impedances of the foundation are included in motion vector of the structure. The 
calculation was justified by a finite element method and made under the variation 
of the different parameters such as shear wave velocity, soil density, and 

Equivalent radius 1.13 m 0.85 m 0.56 m 

Displacement at level 1 
(cm) 

RPA 2003 0.189 0.189 0.190 

UBC97 0.198 0.198 0.199 

Displacement at level 2 
(cm) 

RPA 2003 0.349 0.352 0.362 

UBC97 0.365 0.368 0.379 

Displacement at level 3 
(cm) 

RPA 2003 0.450 0.461 0.495 

UBC97 0.471 0.483 0.518 
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foundation dimensions. Maximum displacement values related to the height of the 
frame are summarized in Figure 31. 

 

 

Fig. 31. Maximum displacements in the frame 
The study was very extensive, starting with the calculation of dynamic 
impedances through to the calculation of the frame displacement at the three 
levels, under different soil and structure parameters. In this regard, the following 
points were determined: 

 The different dynamic impedance calculation methods were presented for the 
translational and rotational degrees of freedom. First, this impedance function 
was illustrated by mathematically developing the sum of forces applied to the 
foundation in the different directions. Then, the formula of the force applied 
was derived. This force is mainly related to the displacement imposed by the 
dynamic stiffness. Then, a numerical calculation tool was presented and used 
to easily calculate the dynamic impedances and to determine their variation 
according to increasing the dimensionless frequency.  

 The calculation of dynamic impedances allowed us to demonstrate soil effects 
on the response of structures considered to be free at the base. This is shown 
by the formula of motion vector of a three-degrees-of-freedom structure with 
a flexible base. In fact, the substructure method uses these impedances to 
determine spring stiffness and damper values in the different degrees of 
freedom.  

 The developed substructure method is static based on the equivalent static 
method, which allows determining of the static forces in each level of the frame 
using two codes; RPA2003 and UBC97. The results, as a function of maximum 
lateral displacement given by the finite element method, and their comparison 
with those given by the presented substructure method, which is based on the 
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cone model, make it possible to appreciate the importance, precision, and ease 
of the latter in practice and also in the calculation of displacement of structures 
found in seismic zones. 

 Soil damping played an important role in the earthquake resistance of the 
superstructure, by minimizing its displacement and changing its behavior so it 
could have certain ductility under seismic excitation. 

 The effects of soil densification on structural behavior were examined through 
the evaluation of impedance functions calculated using the cone method for 
the four degrees of freedom. A considerable increase in stiffness and damping 
was noticed for all dynamic impedances. Therefore, compaction has a direct 
influence on soil damping and stiffness in a proportionate manner. This causes 
a decrease in motion of the structure being studied. 

 The impact of soil type change on the design of a construction after 
densification of the soil by means of compaction techniques could be 
significant and beneficial in terms of reduction of load range, therefore, it could 
be an economic asset. 

 Impedance functions are heavily influenced by foundation radius. A decrease 
in the latter leads to a decrease in stiffness and damping, which ultimately 
causes an increase in displacement of the structure being studied. 
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