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This paper analyzes the process of fracture in 41Cr4 steel on the basis of experimental and numerical data 
obtained for non-propagating cracks. The author’s previous and latest experimental results were used to 
determine the apparent crack initiation moment and fracture toughness for the material under plane strain 
conditions. Numerical simulations were carried out to assess changes in the J-integral, the crack tip opening 
displacement, the size of the plastic region and the distribution of stresses around the crack tip. A complex 
numerical analysis based on the true stress-strain curve was performed to determine the behavior of 41Cr4 steel 
under increasing external loads. 
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1. Introduction 
 
 Assessing the process of fracture in structural elements requires performing suitable tests to 
determine the relevant mechanical properties of the material that the element is made of, especially its 
fracture toughness. Before experiments, engineers or researchers frequently subject the material studied to a 
controlled thermal or thermo-chemical treatment so that the mechanical properties including fracture 
toughness are determined under conditions similar to those the material will operate in. Such investigations 
generally provide sufficient data to determine the required property. However, not all materials that 
engineers deal with have easy-to-predict mechanical properties, e.g. fracture toughness. A good illustration is 
Ref. [1], which discusses problems encountered in the analysis of the fracture toughness of 41Cr4 steel. That 
study, however, did not indicate a reliable method that could be used to determine the fracture toughness of 
the material. The ASTM standard [2], which is commonly used to assess fracture toughness, could not be 
applied, as it did not meet a number of important conditions specified in the standard [2]. The use of  the 
Polish standard [3] to determine the fracture toughness of 41Cr4 steel analyzed in [1] resulted in the 
determination of the value of JQ, which, after certain conditions were satisfied, was long treated as a material 
constant and now is considered a material property [4]. The attempt to adapt the algorithm used in the 
method of multiple specimens proposed by Begley and Landes [5, 6] to precisely determine the fracture 
toughness of 41Cr4 steel was also unsuccessful. 
 If the three methods are not suitable to determine the fracture toughness and analyze the whole 
process of fracture of a structural element made of a material whose  mechanical strength properties are not 
known, other approaches should be employed. For the case described in [1], an engineer should be able to 
find a satisfactory solution by combining experimental data with analytical considerations based on 
numerical calculations to determine the stresses and strains near the crack tip and to characterize selected 
parameters of fracture mechanics defining the behavior of the material under increasing external load. Such 
an analysis should be based on the true stress-strain curve registered during the experiments so that the 
material behavior can be determined with as high precision as possible. The numerical analysis should be 
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conducted both for non-propagating and propagating cracks. The J-R curves, which show changes in the J-
integral (a parameter controlling the process of fracture in elastic and plastic materials) as a function of crack 
length growth, were generated from the experimental data [1]. 
 
2. Mechanical properties of 41Cr4 steel (based on [1])  
 
 The material mentioned in Section 1, 41Cr4 steel, for which fracture toughness could not be 
determined accurately using different methods [1, 7], was sampled from a real structure [1]. The basic 
mechanical properties (yield strength 0, tensile strength Rm, Young’s modulus E, strain hardening exponent 
n in the R-O law) were determined through uniaxial tensile testing using rectangular cross-section specimens 
cut out of a real structure [1]. Figure 1a shows engineering stress-strain curves obtained during experiments 
[1]. Table 1 presents the basic mechanical properties established experimentally through uniaxial tensile tests 
discussed in Ref. [1]. The use of results obtained in uniaxial tensile strength tests conducted for 41Cr4 steel 
to perform numerical calculations requires converting engineering stress-strain curves to a true stress-strain 
curve. The engineering stress-strain curve [1] with the lowest value of the yield strength selected from a set 
of five curves forms the bottom limit of all the stress-strain curves, in accordance with the requirements of 
the FITNET procedures [7, 8]. The true stress-strain curve plotted according to these requirements, is shown 
in Fig.1b. It should be noted that the FE analysis requires using the true stress-strain curve (see Fig.1b). 
 
a) b)

 
Fig. 1. a) Engineering stress-strain curves obtained for 41Cr4 steel through uniaxial tensile testing [1].

b) True stress-strain curve for 41Cr4 steel plotted for the numerical calculations. 
 
 In this state, 41Cr4 steel has a clear yield point, which may make the modeling slightly more 
difficult. However, the steep local declines in the model true stress-strain curve used in the FE-based analysis 
are smoothed. As can be seen from the curve in Fig.1b, the yield strength is 0=439MPa while Young’s 
modulus is E=209GPa. These values, with the Poisson ratio  being 0.3, will be used in the numerical 
calculations. For the needs of the FE analysis, the yield strength 0 is approximately 2.4% smaller than the 
minimum clear yield strength Reb, while Young’s modulus is 3.5% greater than the minimum value 
determined experimentally; however, it is equal to the mean value and the median for a set of experimental 
data (see Tab.1 and analysis of the results included in Ref. [1]). 
 The fracture toughness of the analyzed steel was measured using specimens cut out of a real 
structural element. The specimens were typical single-edge notched specimens to be subjected to three-point 
bending SEN(B) prepared according to the relevant standards [2, 3]. They were 25 mm in width (W) and 5, 
10 or 15 mm in thickness (B). The space between the supports, S, was S=4W=100 mm, as recommended by 
the standards. The relative crack length, being a sum of the lengths of the notch cut and the derived fatigue 
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crack, satisfied the condition specified in the standards that a/W=0.50. It was assumed that the measure of 
fracture toughness was the critical value of the integral to be determined with the surface-crack-in-flexure 
method [1] (the change of the specimen susceptibility). The changes registered in the specimen during the 
tests were the load P, the crack mouth opening displacement M and the displacement of the point at which 
the load vLL was applied [1]. The signals were necessary to determine the values of the J-integral in 
accordance with the relevant ASTM [2] or Polish [3] standard, and also to calculate the crack length growth. 
Figure 2 in [1] shows fifteen P=f(M) curves illustrating the relationship between the load and the crack tip 
opening displacement. 
 
Table 1. Selected results of the uniaxial tensile tests for 41Cr4 steel on the basis of [1]. 
 

Number of the specimen S0 [mm2] E [GPa] Reb [MPa] Rm [MPa] At m n 
No. 1 20.16 209 460 706 0.149 0.100 8.90
No. 2 20.18 208 473 703 0.153 0.105 9.66
No. 3 20.00 209 450 705 0.134 0.089 8.28
No. 4 20.20 202 469 705 0.144 0.098 9.19
No. 5 20.10 216 459 714 0.130 0.088 8.42

 average 209 462 707 0.142 0.096 8.89
 minimum 202 450 703 0.130 0.088 8.28
 maximum 216 473 714 0.153 0.105 9.66
 median 209 460 705 0.144 0.098 8.90

 
where: S0 – cross-sectional area of the specimen; E – Young’s modulus, Reb – lower yield strength, Rm – 
ultimate tensile strength, At – total elongation at failure, m – strain corresponding to the ultimate tensile 
strength, n – strain hardening exponent in the R-O law determined for =1 on the basis of the yield strength 

and ultimate tensile strength using the exponential law 
 
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a) 

 

b) c) 

 
 
Fig.2. Experimental results showing the relationship between the load and the crack tip opening

displacement P=f(M) for the SEN(B) specimens made of 41Cr4 steel: a) B=5mm; b) B=10mm; c) 
B=15mm [1]. 

 
 All the fracture toughness tests were performed using an MTS 810 test system and an MTS 632.03F-
30 Opt.004 sensor [1]. The experimental data were analyzed with the MTS Fracture Toughness 793.50 
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version 4.10 program that the universal testing machine was equipped with [1]. The analysis of the registered 
signals was conducted in accordance with the recommendations given in the ASTM standard [2]. The 
resulting text file provides all the necessary data to determine the fracture toughness according to [2] using 
the single specimen method and the surface-crack-in-flexure method [1]. The MTS 793.50 Fracture 
Toughness 4.10 version program automatically calculates the change in flexure and, according to the 
relevant standard, determines the increase in the crack length and measures the area under the P=f(M) curve 
to estimate the energy required to determine the value of the J-integral [1]. Then, as recommended in [2], the 
MTS 793.50 Fracture Toughness 4.10 version program creates a curve showing the relationship between the 
J-integral and the crack length growth and, using the results from the static tensile strength tests, draws the 
offset line and the exclusion lines resulting from the conditions specified in the ASTM standard [1]. The 
results obtained for 41Cr4 steel are shown in Fig.3. 
 
a) b)

 
c) 

   
 

 

 
Fig.3. J-R curves for SEN(B) specimens made of 41Cr4 steel with the necessary lines drawn according to the

ASTM standard [2]: a) specimens with a thickness B of 5 mm; b) specimens with a thickness B of 10 
mm c) specimens with a thickness B of 15 mm (plots drawn on the basis of [1]). 

 
 The analysis of the J-R curves performed by means of the MTS 793.50 Fracture Toughness 4.10 
version program according to the ASTM standard [2] reveals that the critical values of the J-integral for the 
material studied cannot be determined and it is due to the fact that the condition concerning the number of 
important points in the area of analysis limited by the construction line, the offset line and the exclusion lines 
is not satisfied [1]. 
 The most common standard used to measure fracture toughness is the ASTM standard [2]. If, 
however, fracture toughness is difficult to determine, the ESIS procedure [9] or a country-specific standard 
document is used. An example is the PN-88/H-04336 standard [3], still in use, not changed for nearly 30 
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years. The procedure provided in this standard [3] is well-suited to determine the fracture toughness 
(designated by JQ) of practically all specimens; however, there is a wide scatter of results, and, for specimens 
with B=5mm, the values of the J-integral do not satisfy the condition of plane strain [1]. The results obtained 
for specimens with B=15mm are the most reliable and exhibit little scatter. The approach described in Ref. 
[1], which suggests determining the fracture toughness JQ of the steel for thick specimens, may prove to be 
correct. Table 2 shows the experimental results and the geometrical dimensions of the specimens. The 
graphical analysis of the J-R curve for the SEN(B) specimen with B=5mm performed according to the Polish 
standard [3] is illustrated in Fig.4 [1]. Figure 6a compares the values of fracture toughness JQ determined 
according to the standard [3] for different thicknesses of the SEN(B) specimen. 
 

 

 

 
Fig.4. Analysis of the J-R curve for the SEN(B) specimen made of 41Cr4 steel with a thickness B of 5 mm –

Specimen 5.1; analysis performed in accordance with the procedure specified in the PN-88/H-04336 
standard [3] (figure prepared on the basis of [1]). 

 
 However, the results obtained using [3] may not be reliable. Since the standard is not well-suited to 
determine fracture toughness [1], other solutions are necessary, for example, ones capable of predicting the 
apparent crack initiation time. The MTS 793.50 Fracture Toughness version 4.10 test application was used to 
calculate the apparent crack initiation time using an adapted procedure for determining the critical values of 
the stress intensity factor KQ, plotting the regression line for the elastic region of the P=f(M) curve and then 
the line in the 95% confidence interval of the slope of the regression line, and finally looking for the point of 
intersection of the P=f(M) curve with the line in the 95% confidence interval of the slope of the regression 
line [2]. The MTS 793.50 Fracture Toughness version 4.10 program automatically performs operations 
providing the value of the load PQ and the corresponding value of the stress intensity factor KQ determined 
according to the formulae given in [2]. Figure 5 shows how the analysis was conducted with the MTS 793.50 
Fracture Toughness version 4.10 program. The analysis results are provided in Tab.2, where the values of KQ 
were calculated from the JKQ-integral. The stress intensity factor KQ and the corresponding JKQ-integral 
versus the thickness of the SEN(B) specimen are illustrated in Figs 6b and 6c, respectively. 
 Table 2 also shows the relative values of the load corresponding to the load normalized by the limit 
load, PQ/P0, both for the plane strain and plane stress conditions calculated according to the EPRI procedures 
[10], where formulas for determining the limit load for SEN(B) and another geometry are presented (the 
alternative formulas for the determination of the limit load for SEN(T), SEN(B) and CC(T) geometry are 
presented in [34, 35, 36] respectively). The load values are presented for the plane strain and plane stress 
states because it is impossible to assess fracture toughness according to the ASTM standard [2] and no clear 
value of fracture toughness can be determined using the Polish standard [3]; analysis of 41Cr4 steel 
according to [3] does not indicate clearly which condition of the material is considered. 
 The apparent values of the crack initiation time provided, in Tab.2, with the values of the load PQ 
(for which the fracture toughness KQ was calculated according to the ASTM procedure [2] used for 
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determining the critical values of the stress intensity factor KIC) generally correspond to the external load 
constituting from 70% to 90 % of the limit load for the plane strain state and from 90% to 110% of the limit 
load for the plane stress state. The limit load was calculated  according to the formulae provided in the EPRI 
procedures [10]. The value of the stress intensity factor KQ determined for the load PQ ranges between 38 and 
47 MPam0.5. After the value of KQ_B=25 is calculated using the FITNET procedures [7, 8] well-suited for the 
reference thickness B=25mm, it is clear that, in most cases, the value of the stress intensity factor KQ_B=25 
ranges from 40 to 42MPam0.5, which corresponds to the load PQ equal to approximately 75% and 105% of 
the limit load for the plane strain and plane stress states, respectively. 
 
Table 2.  Experimental data obtained for 41Cr4 steel during the fracture toughness tests (data selected on the 

basis of [1]). 
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5.1 25.72 4.85 

0.50 

3.30 38.80 0.68 0.93 6.56 32.48 4.60 328.71 17.79 

5.2 25.60 4.76 3.50 42.70 0.74 1.00 7.95 34.99 5.34 199.17 10.78 

5.3 25.68 4.90 4.50 53.24 0.92 1.25 12.36 42.12 7.73 164.09 8.88 

10.1 25.68 9.95 8.00 46.90 0.81 1.09 9.59 41.37 7.46 45.74 2.48 

10.2 25.60 10.18 6.80 38.90 0.67 0.91 6.60 35.10 5.37 33.62 1.82 

10.3 25.67 10.14 7.30 41.68 0.72 0.98 7.57 37.30 6.07 62.08 3.36 

15.1 25.66 15.00 11.60 44.70 0.77 1.05 8.71 41.74 7.59 ---* ---* 

15.2 25.70 15.00 11.10 43.00 0.74 1.01 8.06 40.24 7.06 74.30 4.02 

15.3 25.64 15.00 11.70 45.20 0.78 1.06 8.91 42.18 7.75 77.35 4.18 
 
where: W – specimen width; B – specimen thickness; a/W – relative crack length, PQ – load for the apparent 
crack initiation time determined in accordance with the ASTM procedure [2] to calculate KIC; KQ – critical 
value of the stress intensity factor for the apparent crack initiation time at the load PQ; P0_p.strain – limit load 
for the SEN(B) specimen under plane strain according to the EPRI procedures [10] 
P0_p.strain=0.7280b2/(2W), where b – length of the uncracked ligament b=W-a=W-(a/WW); P0_p.stress – limit 
load for the SEN(B) specimen under plane stress according to the EPRI procedures [10] 
P0_p.stress=0.5360b2/(2W); JKQ – value of the J-integral corresponding to the value of the stress intensity 
factor KQ at the load PQ calculated as JKQ=KQ

2/E’, where E’=E/(1-2) under plane strain and E’=E under 
plane stress (it should be noted that the table above shows values for the plane strain state because the values 
are lower than those for the plane stress state); KQ_B=25 – values of the stress intensity factor at the load PQ 
calculated for the reference thickness B=25mm, in accordance with the FITNET procedures [7, 8], using the 
formula KQ_B=25=20+(KQ-20)(B/25)0.25; JKQ_B=25 – value of the J-integral corresponding to the value of the 
stress intensity factor KQ_B=25, calculated as JKQ_B=25=KQ_B=25

2/E’ (it should be noted that the table shows 
values for the plane strain state); JQ – critical values of the J-integral, determined according to PN-88/H-
04336; 25JQ/0 – minimum values of the geometrical dimensions (width W, thickness B, the crack length a, and 
length of the uncracked ligament b) ensuring the plane strain state for fracture toughness JQ; 0 – yield stress (it 
should be noted that the calculations were conducted assuming the mean value of Reh, as shown in Tab.1). 
 The article takes into account both the plane strain and plane stress states. It is essential to decide 
which of them should be used in the analysis. The values of the limit load for the plane stress state are lower 
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than those for the plane strain state. Thus, the plane stress state should be considered while determining the 
strength of a structure with defects using the FAD or CDF diagrams [7, 8]; this approach guarantees a lower 
degree of conservatism of the solution. Attempts to determine fracture toughness according to the ASTM 
standard [2] were not successful. It cannot be concluded that the specimens made of 41Cr4 steel were under 
plane strain. When the Polish standard [3] was used, the analysis confirmed the plane strain condition. The 
results, however, may not be found sufficiently reliable. The problem is interesting and could be further 
discussed but it is not the topic of this article.  
 
a) b)

 
 
Fig.5. Determining the apparent crack initiation time using the adapted procedure for estimating the fracture

toughness of brittle materials – the critical value of the stress intensity factor KQ: a) the whole 
P=f(M) curve; b) magnified fragment of the P=f(M) curve.   

 
a) 

 

b) c) 

 
Fig.6. a) Critical values of the fracture toughness JQ determined for 41Cr4 steel in accordance with the PN-

88/H-04336 standard [3] (figure prepared on the basis of [1]); b) Apparent critical values of fracture
toughness KQ determined in accordance with the ASTM standard [2] using the P=f(M) curves plotted 
for 41Cr4 steel; the crack initiation time was assumed to occur at the point corresponding to PQ

determined according to the ASTM standard [2], following the relevant procedure for determining KIC; 
c) Values of the J-integral - JKQ as a function of the specimen thickness B for 41Cr4 steel. 

 
 From the experimental data presented in [1] it can be concluded that the material studied, 41Cr4 steel, 
which exhibits a clear yield point, undergoes considerable plastic deformations also near the crack tip. As 
mentioned in [1], the crack length growth in SEN(B) specimens was step like in nature, which made the 
assessment of fracture toughness and the use of the ASTM procedure difficult [2]. Steps in the crack length 
growth are also visible on certain P=f(M) curves [1]. It seems that the use of thicker specimens would make the 
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determination of the fracture toughness of 41Cr4 steel easy and clear using the ASTM standard [2]. However, 
there is no such guarantee. For the time being engineers need to use other procedures (for instance, that provided 
in standard [3]) or recommendations that will allow them to determine fracture toughness as precisely as possible. 
 The experimental and numerical investigations described above have been extended to consider many 
new aspects of the fracture process for 41Cr4 steel. The numerical analysis  was divided into two parts: one was 
concerned with non-propagating cracks, while the other involved simulations for propagating cracks using the 
experimentally registered J-R curves. It was necessary to determine the distribution of stresses and strains near the 
crack tip, calculate some parameters of geometric constraints [7] and determine other important parameters of the 
elastic-plastic fracture mechanics. The numerical calculations were performed assuming small and large 
deformations and displacements. This article will present and discuss calculation results for non-propagating 
cracks while part two of the article will provide simulation results for propagating cracks. 
 
3. Details of the FE analysis for non-propagating cracks 
 
 The numerical calculations for SEN(B) specimens made of 41Cr4 steel were performed using the 
ADINA SYSTEM 8.8 [11,12]. All the calculations were conducted for the material model (Fig.1b) based on 
the true stress-strain curve, constituting the bottom limit of all the stress-strain curves registered during the 
tests of 41Cr4 steel. As mentioned in Section 2, the calculations were carried out assuming that the yield 
stress 0 was 439 MPa, Young’s modulus E was 209 GPa and the Poisson ratio  was 0.3. In the FE analysis, 
a heterogeneous, isotropic elastic-plastic material was modeled. The Huber-Mises-Hencky yield criterion of 
plasticity was used in the calculations. The stress-strain curve was modeled as a straight line until yield stress 
was reached (strains were determined from the relationship between stresses and strains using Hooke’s law). 
After yield stress was reached, the coordinates of the subsequent points of the modeled stress-strain curve 
were determined on the basis of the bottom limits registered experimentally as stress-strain curves, and using 
the recommendations of the authors of the ADINA package [11, 12], according to which stresses increase 
with increasing strains. 
 The calculations were made assuming a constant specimen width (W=25mm) and a constant length 
of support span S=4W=100mm. Only half of the specimen was modeled using the existing axis of symmetry. 
The actual behavior of the SEN(B) specimen was determined experimentally. The FEM calculations 
involved solving a contact problem. The specimen was loaded using a loading roller, modeled as a quarter of 
an arc of a circle with a diameter of 10 mm. The arc – a model of the loading roller – was subjected to a 
displacement increasing linearly in time. The specimen support was modeled as half of an arc of a circle also 
with a diameter of 10mm, not affected by any displacement. The model of the loading roller and the model 
of the support for the SEN(B) specimen – a quarter and a half of the arc, respectively – were divided into 90 
equal double-node finite elements (FEs).  
 The numerical model of the SEN(B) specimen used in the calculations was based on the guidelines 
provided in Refs. [13-15]. The crack tip was modeled as a quarter of an arc of a circle with rct=1m,. This 
suggests that the radius was 25,000 times smaller than the specimen width W. The crack tip arc was divided 
into 12 equal parts. The area around the crack tip, which was located in the uncracked ligament with a length 
of approximately 3 mm, was divided into 36 FEs. The smallest FE located near the crack tip was 20 times 
smaller than the last one in this area. The smallest FEs located near the crack tip were generally 3,024 times 
smaller than the specimen width. The numerical analysis was conducted both for plane strain and plane stress 
conditions. For this reason, the FE mesh was filled with nine-node 2-D SOLID plane strain-type FEs (for the 
case of plane strain state) or nine-node 2-D SOLID plane stress-type FEs (for the case of plane stress state) 
with “mixed” or “default” interpolation, respectively. For both states of reference, FEs had nine points of 
numerical integration. It should be noted that the FE model of the SEN(B) specimen consisted of 6,029 FEs 
and 24,625 nodes. The numerical calculations were conducted using the same FE mesh both for the plane 
strain state and the plane stress state. Figure 7 shows the geometry of the SEN(B) specimen and the model 
developed for the needs of numerical calculations. 
 



Experimental and numerical analysis of fracture ... 45 

a) 

 

b)

 

 
c) 

 

 
 

d) 

 

 

 
e) 

 
 

 

Fig.7. a) SEN(B) specimen with a hatched area modeled in the FE simulations; b) Numerical model of the
SEN(B) specimen; c) Five out of eight integration contours used to calculate the J-integral using the 
virtual shift method during the FE simulations; d) Magnified fragment of the FE mesh around the
crack tip; e) Diagram showing the method for determining the crack tip opening displacement, as
proposed by Shih [16]. 

 

 Because of the relatively wide range of parameters being analyzed, the FE analysis was performed 
assuming: I. small deformations and displacements, II. large deformations and displacements. In both cases, 
the following physical quantities were assessed: 
 the changes in the J-integral as a function of external load normalized by the limit load; 
 the changes in the crack tip opening displacement as a function of external load normalized by the limit 

load according to the diagram shown in Fig.7e; 
 the increase in the size of the plastic region with increasing external load; 
 the distribution of stresses near the crack tip plotted as a function of physical coordinates (distance from 

the crack tip designated by r) or as a function of normalized coordinates (normalized distance from the 
crack tip =r0/J), for selected values of the external load; 

 the changes in selected parameters of the geometrical constraints, defined without the necessity to 
introduce a constitutive relation presented as a function of physical or normalized coordinates at a 
specified value of the external load; the measures are: 

 the effective stress/yield stress ratio – eff
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 the mean stress/effective stress ratio – 
 xx yy zzm

eff eff

1

3

    
 

 
; 

 the coefficient of stress triaxiality Tz – 
 

zz
z

xx yy

T



  

; 

 the analysis conducted with an assumption of large deformations and large displacements involved 
determining the maximum stresses responsible for crack propagation and their location around the crack tip.  

 

 The another constraints parameters, which may be discussed are the Q-stress (defined by O’Dowd 
and Shih [26, 27]) and A2-amplitude (defined by Yang et al. [28]). The analysis of theses parameters 
involved using the Ramberg-Osgood stress-strain curve in the FEM analysis. Form many hypothetical 
materials defined by R-O relationship, the Q-stress parameter was discussed in [29-31, 34]. 
 As mentioned above, the FE calculations were carried out for small and large deformations. Since large 
plastic deformations were observed during the experiments, a numerical analysis for small deformations did not 
seem essential. However, it is was performed to help compare the FE meshes and verify the numerically 
calculated values of the J-integral, which, for large deformations, is no longer invariant [13-15], as is the case with 
small deformations. The phenomenon is discussed in [15], where a method is provided to eliminate the problem, 
when the analysis of the fracture process requires numerical calculation of the values of the J-integral. The 
problem will be described briefly in the next Section using the data presented in [13-15]. 
 In the analysis, small and large deformations were taken into consideration. The value of the J-
integral dependent on the external load was determined using the virtual shift method [11, 12], based on the 
concept of virtual crack length growth due to energy shift [11, 12]. The analysis involved determining eight 
integration contours going across the area containing all the FEs within a radius of {10, 15, 20, 25, 30, 35, 40 
or 45} of curvature at the crack tip. Figure 7c shows the area and location of the five biggest contours of 
integration that was conducted according to the recommendations provided in [13-15]. References [13-15] 
suggest that the contour of integration should be plotted relatively far from the crack tip, preferably across 
the area that is in the plane stress state. This solution provides results  that are in agreement with the 
numerically calculated value of the J-integral when large deformations and large displacements are assumed 
[13-15] in the analysis of the material both under plane strain and plane stress conditions (Fig. 8b).  
 

a) 

 

b)  c)  

 

Fig.8. a) Relationship between the integration contour and the J-integral calculated numerically assuming 
small deformations; b) Relationship between the integration contour and the J-integral calculated 
numerically assuming large deformations under plane strain; c) Comparison of the numerically
calculated values of the J-integral for the plane strain state assuming small and large deformations;
(author’s own calculations on the basis of [15]). 
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 In the specialist literature, the integration contour defined in this way is known as far-field region 
integration contour. For the SEN(B) specimen with material properties described above, the agreement of the 
numerical results is obtained for a contour whose radius extending over 30 FEs is approximately 3 mm 
(which in turn constitutes 1/8 of the specimen width). The area of the integration contour actually does not 
affect the numerically calculated values of the J-integral when the analysis assumes small deformations and 
small displacements (Fig.8a). The values of the J-integral obtained from eight integration contours were 
similar both for the plane stress and plane strain states assuming small deformations and displacements. 
Figure 8c compares the numerically calculated values of the J-integral for the case of predominant plane 
strain state at small and large deformations (the curves in red and blue, respectively). There is an agreement 
of results at small and large deformations in the range of external loads P satisfying the condition that 
P/P01.50. The agreement is quite important because it allows us to properly interpret other numerical 
results, obtained for both states of reference. 
 
4. Selected results of the numerical calculations for large deformations 
 

4.1. J-integral and the crack tip opening displacement T 
 
 Because of the large plastic deformations observed during the experiments, the numerical analysis  
was performed assuming large deformations. Figure 9 shows the cumulative plots of the J-integral, the crack 
tip opening displacement T and the load line displacement vLL as a function of the external load P 
normalized by the limit load P0. Higher values of the J-integral are reported for SEN(B) specimens under 
plane strain. In the range of the normalized external loads P/P0=0, 1.50, the crack tip opening displacement 
T is also slightly larger for the plane strain state. When the normalized external load P/P0 exceeds 1.50, 
higher values of the crack tip opening displacement are observed under plane stress. The plots in Fig.9 also 
show changes in the parameter m, which was proposed by Shih to determine the relationship between the 
crack tip opening displacement T and the J-integral written as [16] 
 

  T
0

J
m  


. (4.1)  

 
 As can be seen, the value of the coefficient m drops considerably towards the saturation value with 
increasing load in the range of the normalized external loads P/P0=(0, 1.10÷1.20. For the plane strain state, 
the saturation value of the coefficient m is approximately 0.37, while for the plane stress state, this value is 
approximately 0.59 (these values are characteristic of the normalized external loads P/P01.20). For 41Cr4 
steel, for which the maximum external load of the SEN(B) specimens during the experiments was 1.25P0, 
the values of the coefficient m for the saturation value of the m=f(P/P0) curves can be used to analyze the 
fracture process and, if necessary, calculate selected parameters of fracture mechanics.  
 The analysis of the m=f(P/P0) curves reveals that the values determined for the actual geometry of 
the specimens from the true stress-strain curve were lower than the values of the coefficient dn calculated on 
the basis of the parameters  of the HRR singularity field [17, 18], which represents the relationship between 
the crack tip opening displacement and the J-integral but was determined for the case of small-scale yielding. 
The coefficient dn represents the relationship between the J-integral and the crack tip opening displacement 
T, as was the case with the coefficient m, in accordance with T=dnJ/0. The values of the coefficient dn 
calculated for 41Cr4 steel as a hypothetical material characterized by n=8.89 and 0/E=0.002 using the 
parameters of the HRR singularity field are dn=0.475 and dn=0.701 for the plane strain and plane stress 
states, respectively. Reference [19] discusses the relationship between the coefficient dn and the parameter Q 
being a measure of the plane constraints that affect the distribution of stresses around the crack tip and the 
fracture toughness. 
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a) b)

 
Fig. 9. Changes the J-integral, the crack tip opening displacement T, the load line displacement vLL and the 

coefficient m as a function of the normalized external load P/P0: a) plane strain state; b) plane stress state.
 
 When the normalized external loads P/P0 were 0.75 and 1.05 under plane strain and plane stress, 
respectively, which, as described in Section 2 of this article, corresponded to the apparent crack initiation 
time in the SEN(B) specimens, the numerically calculated values of the coefficient m were m=0.81 and 
m=0.65, respectively. Thus, these values differed from the values of the coefficient dn determined from the 
parameters of the HRR singularity field, particularly for the plane strain state (dn=0.475 for the plane strain 
state and dn=0.701 for the plane stress state). It is clear that the value of the coefficient m not only depends 
on the material properties (yield strength, Young’s modulus, strain hardening exponent) but also on the 
specimen geometry and the external load [19], like the different parameters of the geometric constraints (i.e., 
resistance of the material to plastic deformations with increasing external load). 
 
4.2. Analysis of the size of the plastic zone 
 
 As indicated in Section 2 of this paper, during the experiments, extensive plastic deformation was 
observed in 41Cr4 steel near the tip of a propagating crack. The size of the plastic zone for different values 
of the external load was estimated using FE simulations. Both plane strain and plane stress conditions were 
considered. The plastic zone was calculated automatically by means of the ADINA program [11, 12]. For a 
point located in the plastic zone, the effective stress calculated according to the Huber-Mises-Hencky 
criterion was equal to or greater than the yield stress. The plastic region was determined by analyzing the 
effective stresses at each point of the numerical integration. 
 Figures 10 and 11 show how the size of the plastic region changes with increasing external load. The 
analysis of the experimental results (Section 2) and the numerical data indicates that the key parameter is the 
load PQ, whose values are provided in Tab.2. In this study, the load PQ was interpreted as the load causing 
crack initiation. The crack initiation time is calculated to determine fracture toughness KQ according to the 
relevant standard [2]. If the load PQ is referred to the limit load in the plane strain state (on average, 
PQ/P0=0.76), the calculated plastic zone can be represented as is similar to the one presented in Fig.10b. The 
length of the plastic zone near the crack tip is approximately 1.27 mm, which constitutes approximately 10% 
of the length of the uncracked ligament b (rp=1.27mm0.1b, where rp is the length of the plastic zone 
measured along the crack from the crack tip). For the material in the plane stress state subjected to a 
normalized load P/P0 equal to 0.77 (Fig.10d), the length of the plastic zone rp is 2.17 mm (0.17b). When 
the external load is equal to approximately 50% of the limit load (Figs 10a-b), the lengths of the plastic zone 
rp under plane strain and plane stress conditions are 0.89 mm (0.07b) and 1.30 mm (0.10b), respectively. 
 If the load PQ (Tab.2) is referred to the limit load in the plane stress state (on average, PQ/P0=1.03), 
the analysis refers to the state at which the load is nearly equal to or slightly greater than the limit load 
(Fig.11d). As can be seen, the uncracked ligament has not yet undergone plastic deformation; the length of 
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the plastic zone rp is approximately 3.32 mm (0.27b). The same length of the plastic zone was obtained at a 
normalized external load P/P0 of 1.00 for the plane strain state (Fig.11a).  
 
a) 

 

c) 

 
b) 

 

 

 
d)

 

 
Fig.10. Changes in the size of the plastic zone obtained numerically for SEN(B) specimens made of 41Cr4

steel: a) plane strain state at P/P0=0.52; b) plane strain state at P/P0=0.79; c) plane stress state at 
P/P0=0.52; d) plane stress state at P/P0=0.77. 

 
 It is important to note that the size of the plastic zone in the SEN(B) specimens increases with 
increasing external load. The extension of the plastic zone causes the yielding of the uncracked ligament. 
Full plasticity is reached when the two plastic zones, one resulting from the increase in stresses near the 
crack tip and the other originating at the point of load application, meet. For the plane strain state, full 
plasticity is observed at a load P/P0 of 1.07, while for the plane stress state, it takes place at a load P/P0 of 
1.21 (Figs 11b and 11e, respectively). Figures 11c and 11f show the sizes and shapes of the plastic zones for 
the plane strain and plane stress conditions, respectively, at an external load P/P0 of 1.75, which is the mean 
value of the maximum load read from the P=f(M) curves. As can be seen, the effective stresses are actually 
equal to or greater than the yield stress along the whole length of the uncracked ligament. 
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Fig.11. Changes in the size of the plastic zone obtained numerically for SEN(B) specimens made of 41Cr4 steel:
a) plane strain state at P/P0=1.00; b) plane strain state at P/P0=1.07 with plastic deformation of the 
uncracked ligament; c) plane strain state at P/P0=1.75; d) plane stress state at P/P0=1.00; e) plane stress 
state at P/P0=1.21 with plastic deformation of the uncracked ligament; f) plane stress state at P/P0=1.75. 
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 The analysis of the plastic zones indicates that for SEN(B) specimens under plane stress conditions, 
the plastic deformation spreads slowly in the direction determined by the crack line. However, when the 
material is in the plane strain state, the plastic zone begins at the crack tip and moves along the lines inclined 
at an angle of 45 to the crack line, which, in fact, is in agreement with the slip line field theory. 
 Engineers who have no suitable tools to determine fracture toughness (once a material constant, now 
a material property [8]) of a structure containing a crack may choose to assess its structural integrity on the 
basis of the size of the plastic region in the material under plane stress assuming that the load is equal to the 
limit load. If the analysis based on the size of the plastic zone is performed for 41Cr4 steel under plane 
strain, the uncracked ligament undergoes plastic deformation at a normalized load P/P0 of 1.07, with the 
corresponding J-integral being 34.75 N/mm. In this study, it was assumed that all the specimens tested were 
in the plane strain state and the maximum toughness was achieved at a normalized external load 
P/P0_plane_stress of 1.00; thus, the J-integral was approximately 13 N/mm. For the plane strain state, it 
corresponds to a normalized external load P/P0_plane_strain of 0.79. If, however, the critical values of the J-
integral – JC, determined in accordance with the relevant Polish standard [3] for specimens with a thickness 
of 15 mm are found to be reliable, the mean value of the JC is 75.83 N/mm, which corresponds to a 
normalized external load P/P0_plane_strain of 1.19. The phenomenon is accompanied by full plasticity of the 
uncracked ligament. The calculated value of the J-integral guarantees the plane strain state; however, the 
minimum value of the geometrical dimensions calculated from the condition that 25JC/0 needs to be greater 
than or equal to 4.10 mm. 
 
4.3. Analysis of the stress distributions and the selected parameters of geometric constraints 
 
 Figure 12 illustrates changes in the distribution of normal stresses around the crack tip (normalized 
by the yield stress) resulting from an increase in the external load (normalized by the limit load calculated 
according to the EPRI procedures [10]), for the material under plane strain at P/P0. As large deformations 
and large displacements were assumed in the calculations, the stresses around the crack tip were finite, not 
singular, unlike the case with small deformations and small displacements. When large deformations are 
assumed, there is a clear maximum for each normal component of the stress tensor on the curve showing the 
relationship between the stress  and the distance from the crack tip. It should be noted that first the maximum 
stresses increased with increasing external load, and then, after the uncracked ligament underwent plastic  
deformation, they reached a value of saturation. For each normal component of the stress tensor, the distance 
between the maximum stresses and the crack tip measured in the physical coordinates, increases with 
increasing external load (Figs 12a, c, e). When the distribution of stresses is considered as a function of the 
normalized distance from the crack tip =(r0)/J, an increase in the external load causes a decrease in the 
parameter , which can be used in certain fracture criteria [20, 21] (Figs 12b, d, f). It is important to note that 
the point of occurrence of the maximum stresses contributing to crack propagation zz/0 does not coincide 
with the points of occurrence of the maximum normal stresses yy/0 and xx/0. 
 In fracture mechanics, the most interesting problem is the stress responsible for the crack 
propagation, designated as zz/0. The maximum values of the stresses and their normalized location around 
the crack tip  are used to determine the actual fracture toughness in accordance with the fracture criteria 
presented in Refs. [20, 21]. For the steady state, reached after the uncracked ligament underwent plastic 
deformation, the maximum values of the stresses zz/0, yy/0 and xx/0 are approximately 4.52, 2.62 and 
3.57, respectively. The value of the normalized position of maximum stresses zz/0 is approximately 0.42. 
The influence of the material properties and specimen geometry on the maximum opening stress was 
discussed in [32-33]. 
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Fig.12. The distribution of normal stresses around the crack tip versus normalized external load P/P0 in 

SEN(B) specimens made of 41Cr4 steel: a) zz/0=f(r); b) zz/0=f(); c) yy/0=f(r); d) yy/0=f(); 
e) xx/0=f(r); f) xx/0=f(). 

 
 When different criteria of fracture are applied, the discussion should focus on the distribution of 
parameters known in fracture mechanics as parameters of the material resistance to increasing plastic 
deformations (geometric constraints) [8]. The parameters considered in this article are the ratio of the mean 
stress to the yield stress m/0, the ratio of the mean stress to the effective stress m/eff, and the stress 
triaxiality ratio xx/(zz+yy), shown in Fig.13. As can be seen, an increase in the external load leads to an 
increase in the value of each parameter of the geometric constraints, if their distribution is plotted against the 
actual distance from the crack tip (Figs 13a-c). The value of the ratio of the maximum mean stress to the 
yield stress m/0 increases with increasing external load until the uncracked ligament is fully plasticized and 
then reaches a saturation of 3.57. The maximum value of the m/eff ratio also first increases but then 
decreases slightly for full plasticity and reaches a saturation of approximately 2.17. It should be noted that 
the distributions of both the m/0 and m/eff ratios are characterized by a clear maximum, which moves 
further from the crack tip with increasing external load (Figs 13a, c). In the case of the stress triaxiality ratio, 
xx/(zz+yy), it increases with increasing external load (Fig.13e), but the distribution of this parameter 
around the crack tip is different from those obtained for the other two parameters. The parameter 
xx/(zz+yy) is approximately 0.5 at the crack tip until the point corresponding to the normalized distance 
from the crack tip =r0/J=1. The value is typical of the plane strain state, as reported by Guo [22-24] 
(Fig.13f). The analysis of the distributions of the m/0 and m/eff ratios determined as a function of the 
normalized distance from the crack tip =r0/J shows that the higher the external load, the closer to the 
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crack tip the maximum values of  the parameters m/0 and m/eff are observed. The value of the normalized 
distance from the crack tip =r0/J decreases (Figs 13b, d). 
 
a) 

 

c)  e)  

 
b) 

 

 
d) 

 
f) 

 
Fig.13. Relationships between the distribution of selected parameters of the geometric constraints around the

crack tip and the normalized external load P/P0, in the SEN(B) specimen made of 41Cr4 steel: a) 
m/0=f(r); b) m/0=f(); c) m/eff=f(r); d) m/eff=f(); e) xx/(zz+yy)=f(r); f) xx/(zz+yy)=f(). 

 
 Figure 14 compares the distributions of the eff/0, zz/0 and m/eff stress ratios and the distributions 
of the effective plastic strains for three selected levels of the normalized external load P/P0. The distributions 
are plotted against the normalized distance from the crack tip =r0/J. The additional axis of abscissae 
indicates the actual distance from the crack tip. The selection of the three levels of the external load is not 
accidental: 
 For P/P0=0.75, the apparent crack initiation time was determined according to the ASTM standard [2] 

including the procedure of determination of the critical values of the stress intensity factor (see Section 
2 of this paper). 

 When P/P0=1.00, the external load is equal to the limit load; full plasticity of the uncracked ligament is 
not yet observed. 

 P/P0=1.19 is the value of the external load corresponding to the critical value of the J-integral 
(JC=76N/mm); this value can be treated as the fracture toughness of 41Cr4 steel under plane strain in 
accordance with the Polish standard [3]. 

 When P/P0=0.75, the maximum stress responsible for the crack tip opening displacement was 
zz/0=4.11 and it occurred at the normalized distance from the crack tip (=0.70), which corresponded to 
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the actual distance (r=0.022 mm). The actual distance was approximately 568 times smaller than the length 
of the uncracked ligament designated by b. The effective stress eff/0 measured at that point was 
approximately 1.59 and the ratio of the mean stress to the effective stress m/eff was 1.89. The m/eff ratio 
reached a maximum value of 3.00 slightly further from the crack tip, at the normalized distance (=1.28), 
which corresponded to r=0.038 mm constituting 1/329 of b). The effective plastic strain eff measured at the 
point of the maximum zz/0 ratio was 0.05, while at the point of the maximum m/eff ratio it was 0.007. 
 
a) 

 

 
b)  

 
c)  

 
Fig.14. Distributions of the normalized stresses responsible for crack propagation zz/0, the normalized 

effective stresses eff/0, the mean stress to effective stress ratio m/eff and the effective plastic 
strains eff, calculated numerically for the SEN(B) specimen made of 41Cr steel for three selected
levels of the normalized external load: a) P/P0=0.75; b) P/P0=1.00; c) P/P0=1.19. 

 
 When the external load reaches the limit load (P/P0=1.00), the value of maximum stresses 
responsible for crack propagation is zz/0=4.35. The stresses occur at a normalized distance  of 0.68 
(which corresponds to the actual distance r=0.0375mm, which in turn constitutes 1/333 of b). The effective 
stresses measured at that point are approximately eff/0=1.55, and the mean stress to the effective stress ratio 
is m/eff=2.20. The m/eff ratio reaches a maximum slightly further, at a normalized distance  of 1.03 
(which corresponds to r=0.065mm, which in turn constitutes 1/192 of b). The m/eff ratio is 3.08. The 
effective plastic deformations eff measured at a maximum of the zz/0 and m/eff ratios are approximately 
0.05 and 0.004, respectively. 
 When the external load P satisfied the condition P/P0=1.19, the value of the maximum stresses 
responsible for crack propagation is zz/0=4.37. The stresses occur at a normalized distance  of 0.56 
(which corresponds to the actual distance r=0.10mm, which in turn constitutes 1/125 of b). The effective 
stresses measured at that point are approximately eff/0=1.54, and the mean stress to the effective stress ratio 
is m/eff=2.29. The m/eff ratio reaches a maximum slightly further, at a normalized distance  of 0.88 
(which corresponds to r=0.15mm, which in turn constitutes 1/83 of b). The m/eff ratio is 2.97. The 
cumulative effective plastic deformations eff measured at a maximum of the zz/0 and m/eff ratios are 
approximately 0.06 and 0.007, respectively. 
 Figure 15a shows the influence of the external load expressed by means of the J-integral on the stress 
and the selected parameters of the geometric constraints measured at the point of occurrence of maximum 
stresses responsible for crack propagation, which is known to move further from the crack tip with increasing 
external load. The reference value of the J-integral (76N/mm) provided in the plot can be treated as fracture 
toughness under plane strain conditions according to the procedures specified in the Polish standard [3]. This 
value corresponds to the value of the external load, P/P0=1.19. Full plasticity of the uncracked ligament is 
also observed. It is crucial to note that, for 41Cr4 steel, all the parameters under analysis can be treated as a 
measure of the geometric constraints (Fig.15) for a point where J=76N/mm reaches a value of saturation and 
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remains unchanged with increasing external load. For the analyzed steel, the parameters of the geometric 
constraints reach a value of saturation at a load corresponding to the experimentally determined fracture 
toughness. The stress triaxiality parameter, the effective stress to yield stress ratio and the mean stress to 
yield stress ratio are xx/(zz+yy)=0.50, eff/0=1.64, and m/0=3.57, respectively. The saturation of the 
normalized location of the maximum stresses responsible for crack propagation is o=rmax0/J=0.42 
(Fig.15b). 
 

a) b) 

 
Fig.15. Relationship between the selected parameters of the geometric constraints and external load

expressed by the J-integral, measured at the point of occurrence of maximum stresses responsible for
crack propagation. 

 
 The numerical calculations seem to explain the phenomena observed during the fracture toughness 
tests, i.e., large plastic deformations near the crack tip and a clear plastic hinge. The figures above illustrate 
the plastic zones calculated numerically both for the plane strain state and the plane stress state. The plots 
showing the effective stresses normalized by the yield strength suggests that when P/P0=0.75, the plastic 
deformation is considerable and the effective stresses in the range of normalized distances from the crack tip, 
=(0÷6), are greater than or equal to the yield stress, the range of normalized distances from the crack tip 
seems the most interesting because this is where different parameters of the geometric constraints used for 
different fracture criteria are determined [20, 21, 24]. The large plastic deformations are due to the 
occurrence of stresses responsible for crack propagation. For P/P0=0.75, they are over four times higher than 
the yield stress. The high values of the normal stresses around the crack tip (not only those responsible for 
crack propagation) were reported by Sumpter and Forbes [25], who investigated the fracture toughness of 
mild steel with 0=315MPa and n=5. They observed large plastic deformations resulting in brittle fracture; 
they determined fracture toughness, JIC=40N/mm, at external loads much higher than the limit load, 
P/P0=1.21. 
 The application of any fracture criteria for 41Cr4 steel requires assessing the distribution of stresses 
around the crack tip in the range of normalized distances from the crack tip =(0÷6). Since the true stress-
strain curve registered during the experiments was used in the FE analysis, Q stresses or T stresses, which 
obviously are determined for a material defined by a constitutive relationship cannot be taken into account. 
Figure 16 shows the distributions of selected stresses and selected measures of geometric constraints, defined 
directly on the basis of the components of the stress tensor. The plots were created for seven normalized 
distances from the crack tip, =(0.5; 1; 2; 3; 4; 5; 6). 
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a) 

 

b)  c)  

 
d) 

 

 
e) 

 
f) 

 
Fig.16. The distribution of stresses and parameters of the geometric constraints versus J-integral measured 

for the =0 direction for seven normalized distances from the crack tip: a) zz/0=f(J); b) yy/0=f(J); 
c) xx/0=f(J); d) m/0=f(J); m/eff=f(J); f) xx/(zz+yy)=f(J). 

 
 The distributions of the normal stresses and the selected parameters of the geometric constraints 
measured at the normalized distance =0.5 shown in Fig.16 almost coincide with the distributions of the 
normal stresses and the selected parameters of the geometric constraint calculated at the point of occurrence 
of maximum stresses responsible for crack propagation (o=0.42) presented in Fig.15a. In the case of normal 
components of the stress tensor and the mean stresses (Figs 16a-d), the further from the crack tip, the lower 
the value of the stresses. The same obvious conclusion can be drawn after analyzing changes in the values of 
the stress triaxiality parameter, xx/(zz+yy), (Fig.16f), which is 0.5 around the crack tip (=0.5). As 
indicated in the literature [22-24], this value is characteristic of the plane strain state. At this point (=0.5), 
the value of the stress triaxiality parameter practically does not depend on the level of the external load. An 
increase in the normalized distance from the crack tip leads to a decrease in the value of the stress triaxiality 
parameter, xx/(zz+yy), to the limit value of 0.30, which is equal to the value of the Poisson ratio, =0.30, 
assumed in the numerical analysis (Fig.16f). Guo Wanlin [22-24] observed similar changes while 
considering the mechanical fields for three-dimensional elastic-plastic problems. It should be noted that the 
stress triaxiality coefficient xx/(zz+yy) reaches a value equal to that of the Poisson ratio when the 
normalized distances  are greater than 0.5. Another interesting observation is that the parameter 
xx/(zz+yy) reaches a value equal to =0.30 at different levels of the external load for other normalized 
distances from the crack tip. 
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 The distribution of the mean stress to effective stress ratio, m/eff, (Fig.16e) is not easy to determine. 
Near the crack tip, particularly at the point of occurrence of the maximum stresses responsible for crack 
propagation (o=0.42), the value of m/eff is 1.64 and it is practically constant for P/P0>0.85 (Fig.15a). For 
=0.5, the ratio increases with increasing external load (Fig.16e). The analysis of the changes in m/eff=f(J) 
for longer distances from the crack tip (1) reveals that the ratio decreases with increasing external load, 
shifting towards m/eff=1.75, especially for 2. The m/eff ratio reaches 1.75 at different normalized 
distances from the crack tip and at different levels of the external load, expressed by the J-integral. 
 

a) b) 

 
Fig.17. The effective stresses normalized by the yield strength versus external load expressed as the ratio of

the J-integral (a) and P/P0 ratio (b) for the seven  normalized distances from the crack tip for 41Cr4 
steel. 

 
 Figure 17 shows changes in the effective stresses normalized by the yield strength for seven 
normalized distances from the crack tip. The effective stresses at the point of occurrence of maximum 
stresses responsible for crack propagation (o=0.42) are 1.640 and, in fact, do not depend on the external 
load for P/P00.75 (Fig.15a). When the normalized distance  is 0.5, there is a considerable decrease in the 
eff/0 ratio with increasing external load. A similar observation can be made for the distance =1 (Fig.17). It 
can be assumed that, in the range of external loads of P/P00.25, 1.25, the level of the external load does 
not affect the value of the eff/0 ratio, which, for the normalized distances 2, fluctuates around 1 
(Fig.17b).  
 
5. Conclusions 
 
 This paper has been concerned with the experimental and numerical analysis of the fracture process 
in 41Cr4 steel. The study was a continuation of the investigations described in Ref. [1]. The results presented 
here supplement the discussion pertaining to the determination of the fracture toughness of a material under 
plane strain. The experimental and numerical data provide solutions that can be used to assess the strength of 
structural elements containing defects. 
 The analysis of the test results concerning the static tensile strength and fracture toughness of the 
material under plane strain presented in [1] reveals that the fracture toughness JC cannot be determined 
according to the ASTM standard [2]. As indicated in [1], the Polish standard [3] is well-suited to determine 
the fracture toughness JIC of 41Cr4 steel. The value obtained, which was approximately 76N/mm, guarantees 
the occurrence of the plane strain state in specimens with B4.2mm. This condition should apply also to 
other geometrical dimensions of the specimen (the specimen width, the crack length and the length of the 
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uncracked ligament). The findings presented in [1] suggest that since the results of the fracture toughness 
analysis conducted according to [3] may not be satisfactory, the fracture toughness of 41Cr4 steel should be 
assessed by determining the apparent crack initiation time using the recommendations specified in the 
ASTM standard [2] concerning the determination of the critical values of the stress intensity factor KQ for the 
plane strain state. The values of the load PQ and the corresponding values of KQ were calculated, but as 
mentioned above, they can be treated only as apparent quantities to be used when there is no other method of 
analysis. The apparent values of KQ were represented graphically and then compared using the 
recommendations of the FITNET procedures [7]. 
 The experimental data were supplemented with numerical calculations. It was essential to 
numerically determine the values of the J-integral, which is a parameter controlling the process of fracture in 
elastic-plastic materials, the values of the crack tip opening displacement or the distribution of stresses 
around the crack tip. The size of the plastic region was also calculated. The initial aim of  the study was to 
perform calculations both for the plane strain state and the plane stress state. The values of the J-integral, the 
crack tip opening displacement and the size of the plastic region were calculated for both conditions. 
However, as it was possible to determine the fracture toughness of the material according to the Polish 
standard [3], the analysis of the distribution of stresses and selected geometric constraints (determined from 
the numerically calculated stresses) was limited to the plane strain condition. Since the experiments revealed 
large plastic deformations, the numerical analysis was conducted assuming large deformations and large 
displacements, which was to guarantee a finite distribution of stresses around the crack tip. The distribution 
of stresses was standard; there was no singularity, as is the case when the analysis uses the HRR solution 
[17-18].  
 The numerical calculations confirmed the occurrence of substantial plastic deformations in the 
analyzed material. Plastic deformations were visible as early as during the experiments. The results indicate 
that the fracture of 41Cr4 steel took place at full plasticity of the uncracked ligament under external loads 
satisfying the condition that P/P0=1.19. The stresses present were the high stresses responsible for crack 
propagation zz and normal stresses, yy and xx. This contributed also to a considerable level of effective 
stresses at the critical point when the effective stresses were approximately 1.70 in the area close to the 
crack tip, where maximum stresses responsible for crack propagation (o=0.42) occurred. 
 
a) 

 

 
b) 

 
c) 

 
Fig.18. Influence of the external load and the relative distance from the crack tip on the distribution of

effective plastic strains around the crack tip for 41Cr4 steel: a) diagram for the whole range of loads;
b) magnified fragment of the diagram (a); c) diagram for the whole range of loads with the
logarithmic scale along the axis of ordinates. 

 
 Figure 18 shows changes in the effective plastic strain for seven normalized distances from the crack 
tip. As indicated in the guidelines provided in Refs. [11, 12], effective plastic strains are logarithmic strains. 
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At the external load P/P0 identified with the critical value of the integral (JC=76N/mm) obtained 
experimentally according to [3] for specimens with a thickness of 15 mm, the values of the strain eff were 
eff={0.06; 0.004; 0.0014; 0.0008; 0.0004; 0.0002; 510-5} for the normalized distances from the crack tip 
={0.5; 1; 2; 3; 4; 5; 6}, respectively. At the point where the maximum stress responsible for crack 
propagation (o=0.42) was observed, the effective plastic strain eff was 0.06. It is evident that the effective 
plastic strain decreases with increasing distance from the crack tip and increasing external load. In the case 
of smaller normalized distances from the crack tip, the closer to the tip, the higher the value of the effective 
plastic strain (Fig.19). When the normalized distance from the crack tip was 0; 0.2, there was an 
increase in the effective plastic strain with increasing external load; however, for =0.2, the increase was not 
so clear (Figs 19a-c). Thus, the effective plastic strain depends on the location of the point of interest and the 
range of external load. For normalized distances, (0.2; 0.5, there is a drop in the value of the effective 
plastic strain (Fig.19c). As can be seen, for the analyzed range of normalized distances from the crack tip 
0; 0.5, the eff=f(J) curves shift towards saturation, with eff={4.72; 1.53; 0.82; 0.28; 0.11; 0.06; 0.04} 
corresponding to the normalized distance ={0; 0.05; 0.1; 0.2; 0.3; 0.4; 0.5}, respectively. 
 
a) 

 

b) c)

 
Fig.19. Influence of the external load and the relative distance from the crack tip on the distribution of

effective plastic deformations very close to the crack tip  – =0, 0.5: a) diagram for the whole 
range of loads; b) magnified fragment of the diagram (a); c) diagram for the whole range of loads 
with a logarithmic scale along the axis of ordinates. 

 
 The fracture toughness of 41Cr4 steel could not be determined precisely even though the analysis 
was performed with the algorithm recommended in [3] and it was possible to calculate the value of JC for 
specimens 15 mm in thickness. Further experiments for thicker specimens (B/W=1) are essential to confirm 
the results. However, when a quick engineering analysis is required, the preparation of specimens differing 
in geometrical dimensions may not be feasible because of time constraints or because the material sampled 
from a real structure may not have sufficient dimensions, especially thickness.  
 The numerical calculations provided slightly more information on the material studied. The true 
stress-strain curve was used to determine the values of the J-integral and the crack tip opening displacement. 
The relationship between the two parameters was also established on the basis of the formula proposed by 
Shih [16]. The verification of the distribution of plastic zones confirmed considerable plastic deformations. 
The deformations were also calculated and analyzed numerically using the relevant plots. The analysis of the 
normal stresses, the effective stresses and the parameters of the geometric constraints being their derivatives, 
shows that the extensive plastic deformations are due to the relatively high values of stresses responsible for 
crack propagation and other normal components of the stress tensor. The problems concerning stresses 
around the tip of non-propagating cracks have been described in the previous section of this article. Further 
details will be provided in the future in another paper, which will deal with the numerical analysis of 
different parameters of fracture mechanics for propagating cracks. The crack propagation will be modeled on 
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the basis of the experimentally obtained J-R curves, which were used to determine fracture toughness 
according to the recommendations of the ASTM [2] and Polish [3] standards; in the case of SEN(B) 
specimens  with a thickness of 15 mm, it will be possible to calculate  the critical value of the J-integral – JC. 
The results obtained during crack length growth simulations will be a considerable contribution to the 
research on the subject as they will help determine selected parameters of fracture mechanics not only for a 
variable external load but also for the propagating crack with the moving crack tip. 
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Nomenclature 
 
 ASTM  – American Society Testing Materials 
 At  – total elongation at failure 
 a – crack length 
 a/W  – relative crack length 
 B  – specimen thickness 
 b  – length of the uncracked ligament  
 CC(T) – center cracked plate in tension 
 CDF – Crack Driving Force Diagram 
 CTOD  – Crack Tip Opening Displacement  
 da  – crack growth length 
 dn  – coefficient calculated on the basis of the parameters of the HRR singularity field, which 

represents the relationship between the crack tip opening displacement and the J-integral 
 E  – Young’s modulus 
 EPRI  – Electric Power Research Institute 
 ESIS  – European Structural Integrity Society 
 FAD – Failure Assessment Diagram 
 FE – Finite Element 
 FEM – Finite Element Method 
 FITNET – European FITness-for-service NETwork 
 HMH – Huber-Misses-Hencky hypothesis  
 HRR – Hutchinson-Rice-Rosengren 
 J – J-integral 
 JC – critical value of the J-integral 
 JIC  – critical value of the J-integral specified for plane strain state denoted as fracture toughness for 

elastic-plastic materials 
 JKQ  – value of the J-integral corresponding to the value of the stress intensity factor KQ at the load PQ  
  JKQ_B=25  – value of the J-integral corresponding to the value of the stress intensity factor KQ_B=25 

 JQ  – critical values of the J-integral, determined according to PN-88/H-04336 
 J-R  – J-R curves (graphical presentation of the change of the J-integral as a function of the crack 

growth length da)  
 KIC  – critical value of the stress intensity factor specified for plane strain state denoted as fracture 

toughness for elastic materials 
 KQ  – critical value of the stress intensity factor for the apparent crack initiation time at the load PQ;  
 KQ_B=25  – values of the stress intensity factor at the load PQ calculated for the reference thickness B=25mm, 

in accordance with the FITNET procedures [7, 8] 
 m  – coefficient calculated as m=T0/J 
 n – strain hardening exponent in the Ramberg-Osgood relationship 
 P – external load 
 P0 – limit load 
P0_p.strain, P0_plane_strain – limit load for the SEN(B) specimen under plane strain according to the EPRI procedures  
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P0_p.stress, P0_plane_stress – limit load for the SEN(B) specimen under plane stress according to the EPRI procedures 
 PQ  – load for the apparent crack initiation time determined in accordance with the ASTM procedure 

[2] to calculate KIC 
 Q  – Q-stress parameter defined by O’Dowd and Shih, the measure of the in-plane constraints for 

elastic-plastic materials 
 Reb  – lower yield strength 
 Rm  – ultimate tensile strength 
 R-O – Ramberg - Osgood 
 r – physical distance from the crack tip 
 rct – radius of the arc in crack tip 
 rp – length of plastic zone 
 SEN(B) – single edge notched cracked plate in bending 
 SEN(T) – single edge notched cracked plate in tension 
 S0  – cross-sectional area of the specimen 
 T  – T-stress parameter, the measure of the in-plane constraints for elastic materials 
 Tz – stress triaxiality coefficient defined by Guo Wanlin 
 vLL – load line displacement 
 W  – specimen width 
  – constant in the Ramberg-Osgood relationship 
 M – crack mouth opening displacement 
 T – crack tip opening displacement 
 0 – strain corresponding to the yield stress (0=0/E) 
 eff – effective plastic strain 
 m – strain corresponding to the ultimate tensile strength 
  – Poisson’s ratio 
 0  – yield stress 
 0 – yield stress 
 eff – effective stresses calculated according to the HMH hypothesis 
 m – normal stresses 
 xx, yy, zz – normal components of the stress tensor 
  – normalized distance from the crack tip, calculated as =r·J/0 
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