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The present paper is concerned with the problem of scattering of obliquely incident surface water wave train
passing over a step bottom between the regions of finite and infinite depth. Havelock expansions of water wave
potentials are used in the mathematical analysis to obtain the physical parameters reflection and transmission
coefficients in terms of integrals. Appropriate multi-term Galerkin approximations involving ultra spherical
Gegenbauer polynomials are utilized to obtain very accurate numerical estimates for reflection and transmission
coefficients. The numerical results are illustrated in tables.
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transmission coefficients.

1. Introduction

Scattering problems involving fixed vertical thin barriers of various configurations were investigated
long back using a variety of mathematical methods (cf. Dean[1], Ursell [2], Evans[3], Porter [4], Mandal and
Dolai [5], etc.). The problems of water wave scattering by an irregular bottom have some considerable
interest in the literature on linearised theory of water waves due to their importance in finding the effects of
naturally occurring bottom obstacles such as sand ripples on the wave motion (cf. Roseau [6], Kreisel [7],
Fitz Gerald [8], Hamilton [9], Newman [10], Miles [11], Mandal and Gayen [12], Dolai and Dolai [13]).

Problems involving the propagation of water waves in a fluid of variable depth can be divided into
three categories: ‘beach’ problems, where the depth tends to zero, ‘obstacle’ problems, where the depth is a
constant except for variations extending over a finite interval in space, and ‘changing-depth’ problems,
where the depth changes from one limiting value to another limiting value. There have been many
investigations of the beach and obstacle problems (cf. Stoker [14], Wehausen and Laitone [15]), but
comparatively few studies have been made of the ‘changing depth’ case (cf. Bartholomeusz [16], Evans and
Mclver[17], Newman [10], Dolai[18]). The importance of wave propagation in the case of changing depth is
obvious in many coastal situations such as the passage of waves over a continental shelf. As an idealization
of such a problem, we consider here the case of wave propagation over a step bottom between the regions of
finite and infinite depth.
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2. Formulation of the problem

We consider the motion in an inviscid, homogeneous, incompressible liquid which is supposed
confined between the regions of finite and infinite depth. Cartesian axes are chosen on the mean free surface
while the (x,z) plane has its origin directly above the step, and the axis of y 1is directed down wards into
the liquid. The shallower water is of finite depth %, the deeper water is of infinite depth. A simple sketch of
the problem is given in Fig.1.
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Fig.1. Geometry of the problem.

A simple harmonic progressive oblique wave train originating at x — 400 is incident on the step, and
is partially reflected and partially transmitted. Assuming linear theory, the time harmonic progressive waves

inc

from positive infinity can be represented by the velocity potentials Re {(p 4 (x, y)exp(iSz — icst)} where

inc

¢+ (x,y) =exp(~Ky —imx), @.1)

with K =o? / g, 3=Ksina, m=Kcosa, o being the angle of incidence, c being the frequency of the
incoming waves and g being the gravity. Due to the presence of the step, the oblique incident wave train is
partially reflected by the step and partially transmitted through the gap. If the resulting motion is described
by the velocity potential Re {(p(x, y)exp(i9z — z'cst)} , then @ satisfies

Vch - 82(p =0 in the fluid region, 2.2)

the free surface condition
K(p+a—(p=0 on y=0, 2.3)
oy

the bottom conditions

% _y

on y=h, —wo<x<0, 2.4
Oy
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Vo—>0 as y—>mo, 0<x<oo, 2.5

the condition on the step

g on x=0, h<y<w, (2.6)
ox

the edge condition
r1/3V(p isboundedas r—0, 2.7

r is the distance from the edge (0,4), and the infinity condition

coshk, (h—y)

1
hkyh
o(x,y)—> ot (2.8)

exp(—ipux) as x—>—oo

exp(—Ky —imx)+ R, exp(—Ky +imx)} as x—> o

where k, satisfies k,tanhkyh=K, p’=4k; —97 and T},R, are the unknown transmission and reflection
coefficients to be determined.

3. Method of solution

Since @, (x,y)and @(x,y) are continuous across (0, 0) to (0, &), we can write

o a(pj

- == = , , T O<y<h, 3.1
( ox ]x=0+ ( X ) g ), say, for 0<y G-1)
(9),p, =(0),_,. for O0<y<h. (3.2)

A solution for (p(x, y) satisfying Eqs (2.2), (2.3), (2.4), (2.5) and (2.8) can be represented as

T, wexp(—ipx)+28n cosk, (h—y)exp(s,x), x<0,
cosh kyh 7
(p(x,y) - (3.3)

exp(—Ky) {exp (—imx)+ R, exp(imx)} + IA(k)(k cosky — K sinky)exp(—&x)dk, x>0
0

where s2 =k? + 97,67 =k’ + 97, k, satisfy k, tank, h+K =0.

Using Eqgs (3.3) in Egs (3.1) and (3.2), we find



330 P.Dolai and D.P.Dolai
coshky(h—y)
=—ipl;—————=+ ) 5, B, cosk, , 0 < y<h,
f(y) e cosh k,h Z ) 4
—im(R, — I)exp(—Ky) —ng(k)(k cosky — K sinky)dk, 0<y<oo, (3.4)
and
coshky(h-y) &
I,————~+ ) B, cosk, (h—y)=
! coshkyh Zj: 8 "( y)
" (3.5)
—(1+ R, )exp(-Ky) + jA(k)( k cosky — K sinky)dk, 0<y<h
0
Use of Havelock’s [19] inversion theorem in Eq.(3.4) produces
4kycoshkyh
—ipnTy =—2 0 cosh ky(h—y)dy, 3.6
i 2k0h+sinh2k0h-£f(y) oth=1)dy 3.6)
4k f
B =—7"1— cos k,(h—y)dy, 3.7
s, B, 2knh+sin2knh£f(y) o (h=y)dy 3.7)
h
m(R, —1)= —2in £ () exp(~Ky)dy , (3.8)
5 h
A(k)=———|f(y)(k cosky — K sinky)dy . (3.9)
(k) nF,(k2+K2)'([ ()
Using Eqgs (3.6), (3.7), (3.9) in Eq.(3.5) and from Eq.(3.8), we find
h
jF,(u)M,(y,u)du=exp(—Ky), O<y<h, (3.10)
0
h
IFI (¥)exp(=Ky)dy =C, (3.11)
0
where

MZK

I+R, m~
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Ml(y,u)

2ik, cosh ke, (h— y)coshko (h—u) i 2k, cosk, (h - y)cosk, (h—u)

w(2kyh +sinh 2k,h) - s, (2k,h+sin 2k, h)

.[(kcosky Ksmk)zz)(kcosku Ksmku)dkcosa,
”o g(k? +K7)
Z(RI )
| 3.12
"7 I4R, o

It may be noted that the function F; ( y) and the constant C; are real. The integral Eq.(3.10) is to be

solved by (N +/) multi-term Galerkin approximations of F;(y) in terms of ultra spherical Gegenbauer

polynomials C, s ( v/ h) by noting the behavior of F; ( y) ~(h- y)_l 13 as vy — h—0 given by (cf. Kanoria et
al.[20])

N

Fi(y)=>a,f,(y), 0<y<h (3.13)

n=0
where
J h .
fu(y)= —d—yexp(—Ky)'[exp(Kt)fn (r)dt, O0<y<h,
v

with

271 (1/6)(2n)!
7l (2n+11/ 3" (W = 57

fn(y): 73 ]/6(y/h)

The unknown coefficients a, (n=0,1,2,---,N) are obtained by solving the system of linear
equations

YaR,, =d,,  m=0,12-N (3.14)

where

R =cosa 4(_1)n+m i 2k COSZk h J2n+1/6 (krh)J2m+]/6 (krh)+
" 5,2k, +sin 2k ) (k)"

r]V

+ioo K2 pns116 (kN) S s (Kh) AN 2iky cosh” kyh Losrss (koh) Lo (Koh)
o)y | s
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_ 12m+1/6 (Kh)
(Kh)1/6

m

Once a, (n=0,1,2,---,N) are solved, the real constant C; can be determined from Eq.(3.11)
N
Cr=>a,d,. (3.15)
n=0

Then R; can be found using Eq.(3.12) and 7; can be found from Eq.(3.6) using Eq.(3.13) as

IZI_ZCI’ (3.16)
1+iC,;
iAcoshkyh N
= 75 2l oueirs (koh) (3.17)
(kOh) n=0

where

2k (1+R;) cos a coshkyh
 u((2kyh+sinh 2kyh))

If a simple harmonic progressive oblique wave train originating at x — —oo is incident on the step,
and is partially reflected and partially transmitted, the time harmonic progressive waves from negative

infinity can be represented by the velocity potentials Re {(pi_nc (x, y)exp(iS 12— ict)} where

_coshky(h—y)

0 (%)= cosh kyh exp(in;x), (3.18)

with 8, =kysina, n; =kycoso.

If the resulting motion is described by the velocity potential Re{(p(x, y)exp(iS Iz—ict)} , then ¢

satisfies
VZ(p—Sf(p:O in the fluid region, 3.19)

and the conditions from Eqgs (2.3) to (2.7).
The behavior of (p(x, y) at infinity gives

Tyexp(—Ky +im;x) as x—>+o

@(x,»)— 1 coshk, (h—y)
cosh kyh

3.20
{exp(ip;x)+ R, exp(—ip;x)} as  x—> —oo (3:20)
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where m7 = K? —97 and T,,R, are the unknown transmission and reflection coefficients to be determined.
A solution for (p(x, y) satisfying Eqgs (3.19), (2.3), (2.4), (2.5) and (3.20) can be represented as

T, exp(—Ky +im;x) + jD(k)(kcosky —Ksinky)exp(=€;x)dk, x>0,
0

o(x,y)—> o } (3.21)
%(ko;ly){exp(m,x) + R, exp(—ip,;x)} + ZI:C,, cosk, (h —y)exp(s;x),x <0
where s, =+Jk? +97 &, =[k + 97 .
Using Eq.(3.21) in Egs (3.1) and (3.2), we find
f(y)=im,T, exp(—Ky)—I?;]D(k) (k cos ky — K sin ky)dk, 0<y<oo,
0
(3.22)
i coshk h y
=ip, (1-R,) cosohko +Zs C,cosk,(h—y), O<y<h.
and
T, exp(—Ky) + ID (k cosky — K sin ky)dk =
coshk,(h—y) <
=(I+R2)W+;CnCOSkn(h—y), 0<y<h. (323)
Use of Havelock’s [19] inversion theorem in Eq.(3.22) produces
2IK
L=-—> f(y)exp(-Ky)dy, (3.24)
1y
4k f
C =" k,(h—y)dy, 3.25
5,C, 2knh+sir12knhgf(y)cos a(h=y)dy (3.25)
h
4k, coshkyh
W, (/1-R,)= 0 0 ky(h—y)dy, 3.26
iy (1= R;) 2k0h+sinh2k0h-([f(y)cos o(h=r)dy (3.26)
h
2
D(k)=———|f(y)(kcosky — Ksinky)dy . (3.27)
(k) n%l(szer);[ ()

Using Eqgs (3.24), (3.25), (3.27) in Eq.(3.23) and from Eq.(3.26), we find
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_coshky(h—y)

, O<y<h, 3.28
coshkyh 4 (3.28)

.[FZ (u)M2 (y,u)du

h
coshk, (h—y)

F. —=2dy=C 3.29

»([ Z(y) coshkyh R ( )

where

_ f(u)  4kycosh’ kyh
1+ R, p;(2kyh+sinh 2k)h)’

F, (u)z

_ 1y (2kyh +sinh 2kyh)

My ()= {

ky cosh? k,h

+i k, cosk,(h—y)cosk,(h—u) +L°O( k cosky — K sinky)( k cosku — K sin ku)
- s, (2k,h +sin 2k, h) 2ny &,k +K?)

iK
2m1

exp(—K{y+u})+ (3.30)

dk |,

=R,
I+R,’

2

It may be noted that the function F, ( y) and the constant C, are real. The integral Eq.(3.28) is to be

solved by (N +1 ) multi-term Galerkin approximations of F, ( y) in terms of ultra spherical Gegenbauer

polynomials C3. (y/h) by noting the behavior of F,(y)~(h—y)"" as y—>h-0 given by (cf. Kanoria

et al.[20])

N
Ey(v)=Daufu(v), 0<y<h
n=0
where
4 h )
f(y)= —d—yeXp(—Ky)Iexp(Kt)fn (¢)dt,0<y<h,
y
with

27T (1/6)(2n)!

3l (v/h).
wl(2n+1/ 3)n'"7 (W =7 N

fu()=

The unknown coefficients a; (n=0,1,2,---,N) are obtained by solving the system of linear

equations
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N
> aR,, =d,,  m=0,12,N
n=0
where
_ cos0(2kyh +sinh 2/yh ) 4(-1)"" i 4k, cos’ kb Jayerss (keh) S amerss (keh) n
" cosh? kyh s (2k,h+sin 2k h) (k)"
+£w K2 3106 (k1) 36 (k) ALY Lyerjs (Kh) Ly yss (Kh)
1/2 1/3 ’
Yo (K K2) (K2 07) (k)| 2 (Kh)
d = Lyniis (koh)
m (koh)1/6
Once a;1 (n=0,1,2,---,N) are solved, the real constant C, can be determined from Eq.(3.29)
N ' '
C;=)Y a,d,. (3.33)
n=0
Then R, can be found using Eq.(3.30) and 7, can be found from Eq.(3.24) using Eq.(3.31) as
R, =G (3.34)
i-C,
iBK COSOL <n
T, = —(Kh)M Zan12n+1/6 (Kh) (3.35)
n=0
where
B (1+R,)(2kyh +sinh 2k,h)
2m; cosh? koh '
4. Numerical results
Multi-term Galerkin approximations are used to obtain the numerical estimate for |R1 ,|T;| and
|R2 ,| T, |. In the numerical computations we take at most six terms to produce fairly accurate numerical

estimates for |R ;

.| T and |R,|, | T5].

We display a representative set of numerical estimates for |R1

,|T;| and |R,|,|T;| in Tabs 1 and 2,

taking N =0, 1, 2, 3, 4 and 5 in the (N + 1) - term Galerkin approximations and some particular values of

the different parameters.

It is observed from Tabs 1 and 2 that the computed results for |R1 ,|T,| converge

,|T;| and |R2

very rapidly with N, and for N >3 an accuracy of almost six decimal places is observed. It appears that the
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present method numerical procedure for the numerical computations of reflection and transmission
coefficients is quite efficient. We also note from these tables that for normal incidence of the wave train

=)

normal incidence of the surface wave train, the results are compared with Newman [10] results and a very

good agreement is achieved.

Table 1.

Table 2.

R1| = |R2| =| R|and |T]T2| =I1-|R |2 . Similar observations were pointed out by Newman [10]. For

Kh=0.5,0.=0"
|R| [R,] 7] |
0 0.499321 0.499321 0.831563 0.913674
1 0.497135 0.497135 0.830125 0.912582
2 0.495763 0.495763 0.829743 0.909163
3 0.495754 0.495754 0.829685 0.909054
4 0.495754 0.495754 0.829685 0.909054
5 0.495754 0.495754 0.829685 0.909054
Kh=0.5,0.= 30"
N R [R,] 7] 5|
0 0.431136 0.399764 0.808523 1.02439
1 0.430171 0.399432 0.804461 1.02356
2 0.429813 0.398671 0.801358 1.021435
3 0.429686 0.398543 0.801196 1.021104
4 0.429686 0.398542 0.801196 1.021103
5 0.429686 0.398542 0.801196 1.021103
Kh=1.5,0=0"
N |R| |R,] 7] 3|
0 0.091135 0.091135 0.929412 1.074878
1 0.090356 0.090356 0.928354 | 1.074233
2 0.089934 0.089934 0.925132 | 1.072554
3 0.089842 0.089842 0.924971 1.072389
4 0.089842 0.089842 0.924971 1.072389
5 0.089842 0.089842 0.924971 1.072389
Kh=1.5,0.=30"
N |R| [R,] 7] 3|
0 0.054351 0.036159 0.907255 | 1.138113
1 0.053124 0.034862 0.904326 | 1.135326
2 0.051226 0.034455 0.901538 | 1.134623
3 0.051013 0.034398 0.901384 | 1.134539
4 0.051013 0.034397 0.901383 1.134539
5 0.051013 0.034397 0.901383 1.134539

P.Dolai and D.P.Dolai
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5. Conclusion

The method of multi-term Galerkin approximations in terms of ultra spherical Gegenbauer
polynomials has been utilized here to obtain very accurate numerical estimates for the reflection and
transmission coefficients in the water wave scattering problem of obliquely incident surface wave train on an
obstacle in the form of a step between the regions of finite and infinite depth. By choosing only five terms in
the Galerkin approximations, we achieve almost six figure accuracy in the numerical estimates for the
reflection and transmission coefficients. The numerical results are illustrated in tables. For normal incidence
of the surface wave train, the results are compared with the known results available in the literature and a
very good agreement is achieved.

Nomenclature

g— gravity
h— depth of the shallow water
K — wave number

R;,R, — reflection coefficients

T;,T,— transmission coefficient
t— time
x— horizontal distance
y— vertical distance
¢— velocity potential
o - wave frequency
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