
 

Int. J. of Applied Mechanics and Engineering, 2018, vol.23, No.4, pp.873-884 
DOI: 10.2478/ijame-2018-0048 

 
 

A STUDY ON VIBRATION OF TAPERED NON-HOMOGENEOUS 
RECTANGULAR PLATE WITH STRUCTURAL PARAMETERS 

 
N. KAUR* 

Department of Mathematics, Statistics and Physics 
Punjab Agricultural University 

Ludhiana, Punjab, INDIA 
E-mail: narinder89.kaur@gmail.com 

 
A. SINGHAL 

Department of Mathematics 
Dr. Akhilesh Das Gupta Institute of Technology and Management 

New Delhi, INDIA 
E-mail: ashishsinghal11@gmail.com 

 
A. KHANNA 

Department of Mathematics, D.A.V. College 
Sadhaura, Yamunanagar, Haryana, INDIA 

 E-mail: rajieanupam@gmail.com 
 
 

Effects of structural parameters on the vibration of a tapered non-homogeneous rectangular plate with 
different combinations of boundary conditions are discussed. Tapering in the plate is assumed to be sinusoidal in 
the x-direction. Here, temperature variation and non-homogeneity in the plate material are also considered 
sinusoidal in the x-direction. The Rayleigh-Ritz method is used to calculate the frequency parameter for the first 
two modes of vibration for different values of the structural parameters, i.e. the taper parameter, thermal gradient, 
aspect ratio and non-homogeneity constant. Results are obtained for three boundary conditions, i.e. clamped 
boundary (C-C-C-C), simply supported boundary (SS-SS-SS-SS) and clamped-simply supported boundary (C-
SS-C-SS). Numerical values of the frequency parameter are given in a compact tabular form. 
 
Key words:  vibration, non-homogeneity, thermal gradient, taper parameter, clamped, simply supported, aspect 

ratio. 

 
1. Introduction 
 
 In the construction of structures, machines and development of other mechanical designs, engineers 
and researchers always need to know the vibration characteristics of the system. The importance of studying 
vibrations of non-homogeneous tapered plates which are widely used in the construction of ships, aircrafts, 
bridges, etc., cannot be neglected. Non-homogeneity along with tapering in the plates makes the material 
lighter and stronger. The main purpose of the study on vibrations is to reduce unnecessary and uncontrolled 
vibration by making proper and accurate designs of machines and structures. In the modern era of 
technology, most of the structures and equipment work in high temperature fields with various boundary 
conditions. Therefore it becomes necessary to study the impact of the temperature variation on the 
vibrational properties of the structures.  
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Since half of the 19th century, a lot of work has been done in the field of vibration of plates. One dimensional 
thickness variations were considered by many researchers. But nowadays many researchers are working on 
two dimensional thickness variations of the plates with different boundary conditions. Boundary conditions 
are essential to determine the mathematical solutions to many physical problems.  
 In Leissa [1] published a collection of research papers in his monograph, in which thermal effects on 
different shapes of the plate with various boundary conditions were discussed. In this work, the author 
discussed various combinations of clamped, simply-supported and free edge boundary conditions. Sobotka 
[2] discussed the free vibrations of orthotropic visco-elastic plates with various combinations of boundary 
conditions. Tomar and Gupta [3] investigated the frequencies of an orthotropic plate of varying thickness 
under thermal conditions. In Tomar et al. [4] again discussed the free vibrations of an infinite plate with 
parabolically varying thickness. Cheung and Zhou [5] studied the free vibrations of a tapered rectangular 
plate using the Rayleigh-Ritz method with a set of beam functions. In Lal [6] studied the transverse 
vibrations of an orthotropic non-uniform rectangular plate with continuously varying density. Li [7] analyzed 
the vibrations of a rectangular plate with general elastic boundary support. Gupta et al. [8] analyzed the 
transverse vibrations of a non-homogeneous orthotropic visco-elastic circular plate of varying parabolic 
thickness. Gupta and Sharma [9] studied the thermal effect on the frequencies of a trapezoidal plate with 
varying thickness and density of the material. In Khanna and Singhal [10] studied the vibrations of a visco-
elastic plate with bi-dimensional thickness and temperature variations.  
 Here, the authors investigated the effect of various structural parameters on vibrations of a non-
homogeneous tapered isotropic rectangular plate. Tapering in thickness is considered sinusoidal. Also, the 
temperature variation and non-homogeneity are considered sinusoidal in the x-direction. A tabular 
presentation of numerical values of the first two modes of the frequency parameter at various values of the 
structural parameters for three boundary conditions is given.  
 
2. Analysis of motion and assumptions required 
 
 The fourth order differential equation of motion for an isotropic rectangular plate in the Cartesian 
system is [15] 
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where 
 
E 3
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h
D

12 1


 
 is the flexural rigidity of the plate material, D  is the visco-elastic operator, w(x, y,t) 

is the deflection,  is the Poisson ratio,  is the density of the plate material, E is the Young’s modulus and h 
is the thickness of the plate. 
 The deflection can be considered as a product of two functions as [14] 
 
  ( , , ) ( , ) ( )w x y t W x y T t       (2.2) 
 
where W (x, y) is the deflection function of the rectangular plate and T(t) is a time function. 
 On using Eq.(2.2) in Eq.(2.1), we obtain 
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Eq.(2.3) is satisfied if both of its sides are equal to a constant p2, i.e. 
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 Equation (2.4) is a differential equation of motion and Eq.(2.5) is a differential equation of time 
function for a rectangular plate. 
 
2.1. Assumption for thickness variation 
 
 In this paper, the authors assumed a new variation in thickness of the rectangular plate. It is assumed 
that the thickness of the rectangular plate varies sinusoidally in the x-direction, i.e. 
 

  sin0
x

h h 1
a
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      (2.6) 

 
where a is the length of the rectangular plate, β (0≤ β≤1) is the taper parameter in the x-direction and h0 is the 
thickness of the plate at x=0 and x=a.. It is evident from the expression of the thickness in Eq.(2.6) that the 
minimum value of the thickness is h0 (at x=0 and a) while the maximum value of the thickness is 2h0 (at x=a/2 
and β=1). 
 
2.2. Assumption for temperature variation 
 
 Since temperature affects the vibrational properties of the rectangular plate, different combinations 
of temperature variation have been discussed by various authors in the available literature. In addition, the 
authors assumed sinusoidal temperature variation which has never been discussed earlier 
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2a
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                (2.7) 

 
where  denotes the temperature excess above the reference temperature at any point on the plate and 0 
denotes the temperature excess above the reference temperature at x = 0.  
 The temperature dependence of the modulus of elasticity can be expressed as follows [12] 
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  E ( )0E 1    (2.8) 
 
where E0 is the value of the Young’s modulus at reference temperature and  is the slope of the variation of E 
and . On using Eq.(2.7) in Eq.(2.8), one obtains 
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where,  =  0 (0 ≤ ≤0.8) is the thermal gradient. 
 From the values of h and E, the expression of the flexural rigidity (D1) becomes 
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2.3. Assumption for non-homogeneity in the plate material 
 
 Non-homogeneity in the plate material is characterized by density. The authors assumed that density 
varies sinusoidally in the x-direction, i.e. 
 

  sin0 1
x

1
a

         
  

   (2.11) 

 
where ρ is the density of the plate material, ρ0 is the density at x=0 and α1 is the non-homogeneity constant 
(0≤α1≤1.0). 
 
2.4. Boundary conditions 
 
 In this study, the authors discussed the vibration of a rectangular plate for three different boundary 
conditions which are usually seen in most of the mechanical designs and structures, i.e. C-C-C-C, SS-SS-SS-SS 
and C-SS-C-SS.  
 In order to discuss all these BCs, the following expressions for the deflection function are taken [16]: 
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3. Solution of frequency parameter  
 
 The Rayleigh Ritz technique is applied to solve the frequency equation. In this method, the maximum 
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strain energy (SE) must be equal to the maximum kinetic energy (KE). So it is necessary for the problem under 
consideration that [11] 
 
   E ES K 0   . (3.1) 

 
 In order to make the calculation easy and convenient, the authors introduced non-dimensional 
variables as [13] 
 

  ,   ,    ,   ,
x y w h

X Y W h
a a a a

   
 

(3.2) 

 
 The expressions for the kinetic energy (KE) and the strain energy (SE) of an isotropic rectangular 
plate are as follows [8]: 
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Here, the suffix indicates partial differentiation. 
 On using the above assumptions along with Eq.(3.2); Eq.(3.3) and Eq.(3.4) become 
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 Using Eq.(3.5) and Eq.(3.6) in Eq.(3.1), one gets [9]: 
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and    
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   is the expression of the required frequency parameter.   

 Equation (3.7) consists of two unknown constants, i.e. A1 and A2 arising due to the substitution of W. 
These two constants are to be determined as follows [17] 
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 From Eq.(3.10), the authors obtain the following 
 
  bn1 A1 + bn2 A2 = 0,         n = 1, 2 (3.11) 
 
where bn1 and bn2 include structural parameters. 
 For convenience, the authors took A1=1. Now, the value of A2 can be obtained easily. In order to get 
a non-trivial solution of Eq.(3.11), the determinant of Eq.(3.11) must be zero [18] 
 

  11 12

21 22

b b
0

b b
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 Equation (3.12) is a bi-quadratic equation in  . Various values of the frequency parameter for 
different values of the structural parameters are computed. 
 
Results and discussion 
 
 Results are obtained for an alloy of aluminum, i.e. “Duralumin” which is a visco-elastic material. For 
Duralumin, the following parameters are used in the calculations: 
 
  E = 7.08  1010 N/M2,       G = 2.632  1010 N/M2,       =14.612  105 Ns/M2, 
 
  0  = 2.8  103 kg/M3,       = 0.345      and      h0=0.01 M.   
 
 The first two modes of the frequency parameter are calculated for various combinations of the 
structural parameters at different boundary conditions. All numerical values of the frequency parameter are 
shown in Tabs 1-4. 
 In Tab.1, the first two modes of the frequency parameter at different values of the taper parameter 
are placed systematically for three boundary conditions. The authors discussed the following cases 
 

(i)  = 0.0,  1 = 0.0,  a/b = 1.5      (ii)  = 0.2,  1 = 0.0,  a/b = 1.5      (iii)  = 0.6,  1 = 0.0,  a/b = 1.5. 
 

From Tab.1, the authors concluded the following 
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i) For each fixed value of the taper parameter, the frequency parameter (for the first two modes of the 
vibration) decreases as the thermal gradient increases (at 1 = 0.0, a/b = 1.5) from 0.0 to 0.6, i.e. case (i) 
to case (iii) for all boundary conditions.  

ii) For increasing values of the taper parameter (from 0.0 to 1.0), the frequency parameter (for all boundary 
conditions) increases continuously.  

iii) The first mode of the frequency parameter is maximum for C-SS-C-SS and minimum for C-C-C-C at 
each value of the taper parameter for all the cases. 

iv) The second mode of the frequency parameter is maximum for C-C-C-C and minimum for SS-SS-SS-SS 
at each value of the taper parameter for all the cases. 

 
Table 1. Frequency v/s taper parameter. 
 

B.C.'s  
 = 0.0, 1 = 0.0, a/b = 1.5  = 0.2, 1 = 0.0, a/b = 1.5  = 0.6, 1 = 0.0, a/b = 1.5 

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 

C-C-C-C 

0.0 

256.20 64.82 247.70 62.65 229.78 58.07 

SS-SS-SS-SS 256.91 34.25 248.05 33.05 229.31 30.50 

C-SS-C-SS 288.81 41.94 279.51 40.46 259.90 37.33 

C-C-C-C 

0.2 

300.421 74.98 290.64 72.51 270.02 67.31 

SS-SS-SS-SS 298.43 38.94 288.39 37.60 267.20 34.76 

C-SS-C-SS 340.72 47.54 329.87 45.91 307.01 42.47 

C-C-C-C 

0.4 

345.79 85.41 334.67 82.63 311.22 76.78 

SS-SS-SS-SS 341.70 43.81 330.41 42.32 306.58 39.18 

C-SS-C-SS 393.41 53.45 380.97 51.65 354.76 47.86 

C-C-C-C 

0.6 

391.89 96.01 379.38 92.92 353.03 86.39 

SS-SS-SS-SS 386.11 48.81 373.50 47.17 346.91 43.72 

C-SS-C-SS 446.58 59.55 432.52 57.58 402.92 53.42 

C-C-C-C 

0.8 

438.47 106.73 424.54 103.31 395.23 96.10 

SS-SS-SS-SS 431.28 53.90 417.31 52.10 387.87 48.32 

C-SS-C-SS 500.06 65.79 484.36 63.63 451.33 59.08 

C-C-C-C 

1.0 

485.37 117.53 470.01 113.78 437.70 105.88 

SS-SS-SS-SS 476.99 59.04 461.64 57.09 429.29 52.98 

C-SS-C-SS 553.75 72.12 536.41 69.77 499.93 64.82 

 
 In Tab.2, the frequency parameter (for the first two modes of the vibration) is calculated for 
increasing values of the thermal gradient from 0.0 to 0.8 at various boundary conditions for the following 
cases 
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iv) 1 = 0.0,   = 0.0,  a/b = 1.5      v)  1 = 0.0,   = 0.2,  a/b = 1.5      vi)   1 = 0.0,   = 0.6,  a/b = 1.5. 
 
The authors summarized the findings of Tab.2 as follows: 
 For each fixed value of the thermal gradient, the frequency parameter (for the first two modes of the 
vibration) increases continuously as values of the taper parameter increase from 0.0 to 0.6, i.e. case (iv) to 
case (vi) for all boundary conditions. 
i) For increasing values of the thermal gradient from 0.0 to 0.8, the frequency parameter (for the first two 

modes of the vibration) decreases for all cases and boundary conditions. 
ii) The first mode of the frequency parameter is maximum for C-SS-C-SS and minimum for C-C-C-C for 

all paired values of the thermal gradient and cases (iv) - (vi). 
iii) The second mode of the frequency parameter is maximum for C-C-C-C and minimum for SS-SS-SS-SS 

for all paired values of the thermal gradient and cases (iv) - (vi). 
 
Table 2. Frequency v/s thermal gradient. 
 

B.C.'s  
1 = 0.0,  = 0.0, a/b = 1.5 1  = 0.0,  = 0.2, a/b = 1.5 1 = 0.0,  = 0.6, a/b = 1.5

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 

C-C-C-C 

0.0 

256.20 64.82 300.42 74.98 391.89 96.01 

SS-SS-SS-SS 256.91 34.25 298.43 38.94 386.11 48.81 

C-SS-C-SS 288.81 41.94 340.72 47.54 446.58 59.55 

C-C-C-C 

0.2 

257.70 62.65 290.64 72.51 379.38 92.92 

SS-SS-SS-SS 248.05 33.05 288.39 37.60 373.50 47.17 

C-SS-C-SS 279.51 40.46 329.87 45.91 432.52 57.58 

C-C-C-C 

0.4 

238.91 60.41 280.52 69.96 366.44 89.71 

SS-SS-SS-SS 238.86 31.80 278.00 36.20 360.45 45.48 

C-SS-C-SS 269.88 38.93 318.64 44.22 417.98 55.54 

C-C-C-C 

0.6 

229.78 58.05 270.02 67.31 353.03 86.39 

SS-SS-SS-SS 229.31 30.50 267.02 34.76 346.91 43.72 

C-SS-C-SS 259.90 37.33 307.01 42.47 402.92 53.42 

C-C-C-C 

0.8 

220.27 55.64 259.10 64.55 339.08 82.93 

SS-SS-SS-SS 219.33 29.13 255.95 33.25 332.81 41.88 

C-SS-C-SS 249.52 35.67 294.91 40.64 387.27 51.21 
 
 To observe the effect of the non-homogeneity constant on the frequency parameter, the authors 
computed the frequency parameter with increasing values of the non-homogeneity constant (1) for the 
following cases: 
 
(vii)  = 0.0,   = 0.0,  a/b = 1.5    (viii)    = 0.4,   = 0.4,  a/b = 1.5    (ix)    = 0.8,   = 0.8,  a/b = 1.5. 
 
 Results for case (vii), case (viii) and case (ix) are presented in Tab.3. The authors analyzed the 
numerical results in Tab.3 in the following manner: 
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i) For all the values of 1 the frequency parameter for both the modes of the vibration is minimum for case 
(vii) and maximum for case (ix) at corresponding boundary conditions. 

ii) The first mode of the frequency parameter is maximum for C-SS-C-SS and minimum for C-C-C-C 
while the second mode of the frequency parameter is maximum for C-C-C-C and minimum for SS-SS-
SS-SS for all the corresponding values of the structural parameters. 

iii) It is interesting to note that both the modes of the frequency parameter increase as the non-homogeneity 
constant varies from 0.0 to 1.0 for all the cases. It also proves that the non-homogeneity in the plate 
material directly affects the vibration of the rectangular plate. 

 
Table 3. Frequency v/s non-homogeneity constant. 
 

B.C.'s 1 
 = 0.0,  = 0.0, a/b = 1.5  = 0.4,  = 0.4, a/b = 1.5  = 0.8,  = 0.8, a/b = 1.5 

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 

C-C-C-C 

0.0 

256.20 64.82 323.16 79.76 379.72 92.28 

SS-SS-SS-SS 256.91 34.25 318.72 40.78 372.28 46.31 

C-SS-C-SS 288.81 41.94 368.10 49.79 433.87 56.67 

C-C-C-C 

0.2 

279.17 71.53 352.65 88.04 414.72 101.89 

SS-SS-SS-SS 277.71 37.59 345.19 44.79 403.72 50.90 

C-SS-C-SS 316.59 46.30 403.95 55.00 476.45 62.61 

C-C-C-C 

0.4 

309.99 80.71 392.38 99.58 462.01 115.29 

SS-SS-SS-SS 305.01 42.14 380.11 50.28 445.32 57.18 

C-SS-C-SS 354.50 52.39 453.06 62.28 534.90 70.93 

C-C-C-C 

0.6 

354.93 95.15 450.65 117.29 531.60 135.89 

SS-SS-SS-SS 343.73 48.86 429.91 58.44 504.88 66.56 

C-SS-C-SS 411.02 61.76 526.66 73.51 622.77 83.79 

C-C-C-C 

0.8 

432.60 121.17 552.22 149.70 653.47 173.74 

SS-SS-SS-SS 408.14 60.35 513.23 72.52 604.94 82.86 

C-SS-C-SS 511.09 79.02 658.03 94.34 780.41 107.74 

C-C-C-C 

1.0 

708.89 194.13 919.35 242.51 1097.70 293.77 

SS-SS-SS-SS 599.31 87.33 764.19 106.64 908.80 123.15 

C-SS-C-SS 843.85 130.81 1102.79 158.44 1319.90 182.63 

 
 In order to analyze the effect of the size of the rectangular plate on the vibrations of the plate, the 
authors evaluated the frequency parameter (for the first two modes of vibration) at different values of the 
aspect ratio of the plate (ratio of the length  to the width of the rectangular plate) at various combinations of 
the structural parameters for different boundary conditions and tabulated all numerical values in Tab.4. Here, 
the authors considered the following three cases: 
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(x)   =1= = 0.0      (xi)     =1= = 0.4      (xii)      =1= = 0.8. 
 
 On the basis of Tab.4, the following pragmatic observations were made: 
i) As the aspect ratio increases from 0.5 to 1.5, the frequency parameter (for the first two modes of 

vibration) increases continuously for all cases. 
ii) For each value of the aspect ratio, the frequency parameter (for the first two modes of  vibration) 

increases as the structural parameters vary from case (x) to case (xii) at corresponding boundary 
conditions. 

iii) It is clearly seen that the frequency parameter in case (x) is minimum and it increases from case (x) to 
case (xii).  

 

Table 4. Frequency v/s aspect ratio. 
 

B.C.'s a/b  = 1=  = 0.0  = 1=  = 0.4  = 1 =  = 0.8 

Mode 1 Mode 2 Mode 1 Mode 2 Mode 1 Mode 2 

C-C-C-C 

0.5 

104.94 26.24 137.57 34.50 213.84 53.16 

SS-SS-SS-SS 105.91 13.17 123.43 19.39 169.11 31.30 

C-SS-C-SS 86.90 25.38 117.57 33.56 190.75 52.78 

C-C-C-C 

1 

150.10 38.35 217.12 55.63 354.06 93.67 

SS-SS-SS-SS 149.67 21.08 202.85 30.54 309.52 49.71 

C-SS-C-SS 151.36 30.95 228.62 43.80 388.52 73.68 

C-C-C-C 

1.5 

256.20 64.82 392.38 99.58 653.47 173.74 

SS-SS-SS-SS 256.91 34.25 380.11 50.28 604.94 82.86 

C-SS-C-SS 288.81 41.94 453.06 62.28 780.41 107.74 

 
Conclusions 
 
 On the basis of the above results and discussion, the authors conclude that an acute change in the 
structural parameter may affect the vibrational properties of the rectangular plate. The main goal of this study 
is to provide basic information about vibrations of the rectangular plate at various combinations of the 
structural parameters. The authors concluded the findings of this paper as follows: 
i) The frequency parameter (for the first two modes of vibration) is maximum for zero effect of 

temperature, i.e.  = 0.0 for all the values of the taper parameter. 
ii) The frequency parameter is minimum for uniform thickness of the rectangular plate, i.e. β =0.0 while it 

increases as the taper parameter increases from zero to a non-zero value.  
iii) The frequency parameter is minimum for the homogeneous rectangular plate, i.e. 1 =0.0 while it 

increases as the non-homogeneity constant increases from zero to a non-zero value.  
iv) The frequency parameter is maximum at a/b=1.5 and minimum at a/b=0.5. The size of the plate directly 

affects the vibrations of the rectangular plate. 
 
Nomenclature 

 a  length of rectangular plate 
 b  breadth of rectangular plate 
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 D   visco-elastic operator 

 1D   flexural rigidity 

 E  Young’s modulus 
 h  thickness of plate 
 0h   thickness of plate at x=0 

 0E   Young’s modulus at reference temperature at 0    

 
 T t   time function 

 t   time 

 ( , )W x y   deflection function
 

 
 , ,w x y t   deflection of plate i.e. amplitude 

 x, y  coordinates in the plane of plate 

    thermal gradient  

 1   non-homogeneity constant  

 
   taper parameter  

  
   slope of variation of E with    

    Poisson ratio 

 
   mass density per unit volume of plate’s material 

 0   mass density per unit volume of plate’s material at x=0 

     temperature excess above the reference temperature at any point  

  0   temperature excess above the reference temperature at x=0 
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