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An exact solution and analysis of an initial unsteady two dimensional free convection flow, heat and mass 
transfer in the presence of thermal radiation along an infinite fixed vertical plate when the plate temperature is 
instantaneously raised, is presented. The fluid considered is a gray, absorbing emitting radiation but a non-
scattering medium. Three cases have been discussed, in particular, namely, (i) when, the plate temperature is 
instantaneously raised to a higher constant value, (ii) when, the plate temperature varies linearly with time and 
(iii) when, the plate temperature varies non-linearly with time. A close form general solution for all the cases has 
been obtained in terms of repeated integrals of error functions. In two particular cases, the solutions in terms of 
the repeated integrals of error functions have been further simplified to forms containing only error functions. It is 
observed that for an increase in the radiation parameter N or a decrease in the Grashof  number Gr or Gm, there is 
a fall in the velocity or temperature, but compared to the no radiation case or no diffusing species, there is a rise 
in the velocity and temperature of the fluid. 
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1. Introduction 
  
 The phenomenon of free convection arises in a fluid when temperature changes cause density 
variations leading to buoyancy forces acting on the fluid elements. This process of heat transfer is 
encountered in aeronautics, fluid fuel nuclear reactor and chemical engineering. Soundalgekar [1] presented 
an exact solution for the flow past an infinite vertical isothermal plate impulsively started in a viscous 
incompressible fluid and Patil and Soundalgekar [2] considered the same problem and presented an exact 
solution for an accelerated vertical infinite plate. Flow past a vertical oscillating plate with variable 
temperature has been discussed by Vighnesham et al. [3]. 
 Korycki [4] stated that in textiles (i.e., industrial textiles, textiles designed for use under hermetic 
protective barrier, multilayer clothing materials, etc.) and in textile structures (i.e., needle heating in heavy 
industrial sewing), radiative heat transfer problems are encountered as well. Evidently, high temperature 
phenomena cannot be ignored. Therefore, it is more realistic to study the problem of an unsteady free 
convection flow with radiative heat transfer past a vertical porous plate. Chaudhary and Jain [5] studied the 
problem of an unsteady free convective flow past an impulsively started vertical surface, taking into account 
the effects of radiative heat transfer and suction. Heat and mass transfer effects on a moving plate in the 
presence of thermal radiation were studied by Muthukumarswamy et al. [6] using the Laplace technique.  
Chen [7] studied the problem of combined heat and mass transfer of an electrically conducting fluid in MHD 
natural convection, adjacent to a vertical surface with Ohmic heating. Chandran et al. [8] presented natural 
convection with ramped wall temperature. Several authors, namely, Muthucumaraswamy [9], Pathak et al. 
[10], Chandrakala [11] and Deka and Das [12], studied the problems of free convection flows, modeled 
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under the assumptions of constant surface temperature, ramped wall temperature, or constant surface heat 
flux.  
 However, in practical problems when the plate temperature is raised, it may, initially increase 
linearly or non-linearly with time and therefore it is interesting to know how such initial thermal conditions 
of the plate affect the skin-friction, flow and heat transfer. Parihar [13] studied cases of such initial thermal 
conditions for a free convective flow in the absence of thermal radiation and species concentration. 
Furthermore, the free convection flows together with heat and mass transfer are of great importance in 
geophysics, aeronautics, and engineering. In several processes such as drying, evaporation of water at body 
surface, energy transfer in a wet cooling tower, and flow in a desert cooler, heat and mass transfer occur 
simultaneously. In view of such applications, several authors, namely, Chandrakala et al. [14], 
Muthucumaraswamy et al. [15], Muthucumaraswamy et al. [16], Prasad et al. [17], Narahari et al. [18], 
Rajesh [19], Brewster [20] and Abramowitz [21] investigated free convection flows with simultaneous heat 
and mass transfer phenomenon. However, the exact solutions to these problems have been obtained by few 
authors, namely Mebine et al. [22], Narahari et al. [23], Narahari et al. [18] and Rajesh [19]. 
  In the present paper, an exact solution to the problem of the initial unsteady free convective flow and 
heat transfer along an infinite vertical plate, taking the thermal radiation and species concentration into 
account, has been obtained in three cases, namely, (i) when the plate temperature is instantaneously raised to 
a higher constant value, (ii) when the plate temperature varies linearly with time and (iii) when the plate 
temperature varies non-linearly with time.  
 The results are discussed in detail in section 5.   
 
2. Formulation of the problem 
 

Consider an initial unsteady two-dimensional free convective flow of viscous incompressible 
radiating fluid, with species concentration past an infinite vertical plate fixed in infinite mass of fluid which 
is otherwise at rest. At time ,t 0  the temperature of the plate and fluid is T  and for t > 0, the plate 

temperature is instantaneously raised to ).(tTw  It is assumed that the temperature difference between the 

plate and the fluid is small, so that the fluid properties may be taken as constant except for the influence of 
density variation in the body force term.  The x–axis is taken along the plate in vertical upward direction and 
the y–axis is normal to it. Then, under the usual Boussinesq’s approximations, the equations governing the 
flow, neglecting frictional heat, are given by  
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with the following initial and boundary conditions 
 
  : ,  ,  for allt 0 u 0 T T C C y     , 
 

  :  , ( ), ( )  atw wt 0 u 0 T T t C C t y 0     , (2.4)  

 

  ,  ,  asu 0 T T C C y     . 
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 Here u is the velocity component in the x direction, t is the time,   is the kinematic viscosity, g is 

the acceleration due to gravity,   is the coefficient of volume expansion.   is the volumetric coefficient of 

expansion with species concentration, T is the temperature of the fluid, T  is the temperature of the fluid far 

away from the plate. wT  is the plate temperature,   is the thermal conductivity of the fluid,   is the density, 

Cp is the specific heat at constant pressure, qr is the radiative heat flux in the y direction, C is the species 
concentration, C  is the concentration at infinity and D is the chemical molecular diffusivity.   
 The temperature of the plate and species concentration are now assumed to have the following form 
 

  ( ) r 1
wT t T 1 At 

  , (2.5) 
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r 12

0 0A u u


   is a constant with dimension of velocity and r 1  is an integer. It may be noted 

that r 1  is the case of an isothermal plate (when the plate temperature is instantaneously raised to a 
constant higher temperature), r = 2 is the case of plate temperature varying linearly with time and r 3  is 
the case of plate temperature varying non-linearly with time.  These three particular cases have been 
discussed in particular.  
 We assume the Rosseland approximation [3], for the radiative heat flux, which leads to  
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where   is the Stefan-Boltzmann constant and   is the mean absorption coefficient.  
 If the temperature differences within the flow are sufficiently small such that T4 may be expressed as 
a linear function of the temperature, then the Taylor series for T4 about T , after neglecting higher order 
terms, is given by  
 

  .4 3 4T 4T T 3T    (2.8) 
 

 In view of Eqs (2.7) and (2.8), Eq.(2.2) reduces to  
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where Pr is the Prandtl number, Gr the Grashof number, Gm the Grashof number for mass transfer, Sc the 
Schmidt number, N the radiation parameter and u0  is a constant with dimension of velocity, in Eqs (2.1), 
(2.3), (2.4) and (2.9) which reduce to the following after dropping the astrisk sign 
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with the following initial and boundary conditions 
 
  : , , for allt 0 u 0 0 C 0 y     , 
 
  : , , att 0 u 0 1 C 1 y 0      , (2.13) 
 
             , , as .u 0 0 C 0 y      
 
 The partial differential Eqs (2.10), (2.11) and (2.12) with initial and boundary conditions (2.13) can 
be solved either by the Laplace–transform technique or by using similarity transformation.   
 
3. Solution of the problem 
 
 We choose the latter technique and introduce the following similarity transformations 
 

 ( , ) ( ) ,ru y t t f   
   
  ( , ) ( ) ,y t     (3.1) 
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into Eqs (2.10), (2.11) and (2.12) which reduce to the following ordinary differential equations 
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with the following boundary conditions 
 
  :    ,  ,   0 f 0 1 1      , 
      (3.5) 
  : ,  ,   =f 0 0 0    . 
 

Here, ,
3N

3N 4
 


and a prime denotes differentiation with respect to  . 

 The solutions of Eqs (3.2), (3.3) and (3.4) can be easily obtained in terms of repeated integrals of 
complementary error functions (see, e.g. Abramovitz and Stegun [21]). Equation (3.3) and (3.4), being 
independent of (3.2), is first solved, satisfying the boundary conditions (3.5). Then a particular integral of 
Eq.(3.2), in view of the solution of Eqs (3.3) and (3.4), is obtained by the method of undetermined 
coefficients (Bansal [24]) and finally, the complete solution of Eq.(3.2), satisfying the boundary conditions 
(3.5), is obtained. These solutions are as follows 
 

  ( )
cerf ( Pr. ),r 1 2r 24 r i       (3.6) 

 

 ( )
cerf ( Sc),r 1 2r 2C 4 r i     (3.7) 

 

 

c c

c c

Gr
erf ( Pr . ) erf ( )

( Pr . )

Gm
erf ( Sc ) erf ( ) .

( Sc)

2r 2 r

2r 2 r

r r

r r

t 4 r
i i

1

t 4 r
i i

1

u          

      

 (3.8) 

 

        Here, the function cerf ( )ni z  is the repeated integral of the complementary error function and is given by  
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 The solution (3.8) is valid for Pr.   Scand1 1   . In the case of Pr.  or Sc=1 1  , on taking the 
limiting values, one can easily obtain the following expressions for the velocity. 
 
Case (i): When Pr.   and   Sc1 1    
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Case (ii): When Pr.   and   Sc=1 1   
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Case (iii): When Pr.   and   Sc=1 1   
 

  c c(Gr+Gm) erf ( ) . erf ( )2r 2 2 rr r 1t 4 r i 4r iu         .      (3.12) 

 
 It may be noted that Gm = 0 is the case of absence of species concentration and orN 1   is 
the case of absence of the radiative heat flux. In the case of absence of both the species concentration and 
radiative heat flux, the above expressions for velocity reduce to those obtained by Tak and Parihar [12]. 
 
4. Skin-friction coefficient 

 
 The non-dimensional skin-friction at the plate is determined by the formula.  
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 In the case of no radiation ( )1  and no mass transfer (Gm = 0), the expression for Cf becomes 
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5. Results and discussion 
  
 It may be noted from the non-dimensional Eqs (3.2) to (3.5) that the present problem is described by 
six parameters, namely Gr, Gm, Pr, Sc, r and α (or N). Since the effects of variation of Pr and Sc on the flow 
are well known, all numerical calculations have been performed for Pr = 0.71 and Sc= 0.6. It may be noted 
that α=1 (or N→∞) is the case when the thermal radiation is neglected and Gm =0 is the case of absence of 
species concentration. The value of the parameter r determines whether the temperature and concentration at 
the plate are constant or vary with time (see, Eqs (2.5) and (2.6)). We have chosen r=1, 2 and 3 which 
describes three different physical situations of the flow and discussed the results as follows:  
 
Case (i) r=1 (Isothermal and isosolutal plate): 
 
 This corresponds to the situation of an initial unsteady free convective flow when the temperature 
and concentration of the plate are raised to attain higher constant values instantaneously. In this case, we 
have drawn three-dimensional graphs for velocity distribution u(y, t) for different values of Gr, Gm and N, in 
Figs 1-4. Figure 1 depicts the developing velocity profiles in the presence of thermal radiation and diffusing 
species when Gr=4, Gm=4 and N=3, whereas Fig.2 depicts the case when thermal radiation is neglected 
(α=1 or N→∞), Fig.3 depicts the case when species concentration is absent (Gm=0) and Fig.4, when both 
radiation and concentration are absent (α=1 and Gm=0). 
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Fig.1. Variation of velocity with y and t in the case 
of isothermal plate (r=1). 

Fig.2. Variation of velocity with y and t in the case of 
isothermal plate (r=1) in the absence of radiation. 

 

 
 
Fig.3. Variation of velocity with y and t in the case 

of isothermal plate (r=1) in the absence of 
mass transfer. 

Fig.4. Variation of velocity with y and t in the case 
of isothermal plate (r=1) in the absence of  
both mass transfer and radiation. 

 
 A comparison of Fig.1 with Figs 2, 3 and 4 reveals that there is a rise in velocity due to the presence 
of radiation and/or diffusing species as compared to the cases of no radiation and/or no diffusing species.  
 In Figs 7 and 8, two dimensional graphs have been drawn to depict the variation of velocity u with 
similarity variable   for different values of the radiation parameter N, in the presence and absence of mass 
transfer, respectively, at t=0.4. It may be observed from these figures that for an increase in parameter N, 
there is a fall in the velocity whereas for an increase in Gr or Gm, there is a rise in the velocity. Further, the 
absence of radiation heat transfer and/or mass transfer causes the velocity to decrease which is in conformity 
with the observation drawn from 3D Figs 1-4.  
 
Case (ii) r=2 (Plate temperature and concentration vary linearly with time):  
 
 This is the case of an initial unsteady flow when the temperature and concentration at the plate are 
both linear functions of time. In this case, Fig.5 displays a 3D graph for velocity distribution u(y, t) for Gr=4, 
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Gm=4, N=3 and Fig.9 displays a 2D graph for velocity u against  . Comparing Figs 1 and 5, it may be 
observed that there is a fall in the velocity when the plate temperature and concentration vary linearly with 
time for a fixed time t<1. The effects of other parameters are same as those observed in case (i). 
 
Case (iii) r=3 (Plate temperature and concentration vary non-linearly with time):  
 
 This is the case of an initial unsteady flow when the temperature and concentration at the plate are 
both quadratic functions of time. In this case, Fig.6 displays a 3D graph for velocity distribution u(y, t) for 
Gr=4, Gm=4, N=3 and Fig.10 displays a 2D graph for velocity u against  . Comparing Fig.6 with Figs 1and 
5, it may be observed that there is a further fall in the velocity when the plate temperature and concentration 
vary non-linearly with time for a fixed time t<1, as compared to cases (i) and (ii). 
 

     
 

Fig.5. Variation of velocity with y and t in the case 
of plate temperature varying linearly with 
time (r=2). 

 
Fig.6. Variation of velocity with y and t in the case of 

plate temperature varying non-linearly with 
time (r=3). 

 

     
 

Fig.7. Variation of velocity (u) with similarity 
variable ( ) in the case of isothermal plate 
(r=1). 

 

Fig.8. Velocity variation of velocity (u) with 
similarity variable ( ) in the case of 
isothermal plate (r=1) in the absence of mass 
transfer. 
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Fig.9. Variation of velocity (u) with similarity 
variable ( ) in the case of plate temperature 
varying linearly with time (r=2). 

Fig.10. Variation of velocity (u) with similarity 
variable ( ) in the case of plate temperature 
varying non-linearly with time (r=3) 

 
 Finally, the temperature function   and concentration function C have been plotted against the 
similarity variable   for different values of r and N in Figs 11 and 12, respectively. 
  It is noted from Fig.11 that for all values of r there is a rise in temperature due to the presence of 
thermal radiation as compared to the case of no radiation. Further, the temperature decreases with increasing 
values of N. As N   (no radiation case), the limiting temperature profile is also shown in Fig.11, which is 
the minimum temperature profile as compared to the cases of radiation (N = 3, 5, 15). We also observe that 
the temperature decreases as r increases.  
 In Fig.12, species concentration profiles are shown against  , for various values of r. We observe 
that the species concentration decreases as r increases. 
 

   
 
Fig.11. Temperature profile for Pr=0.71 and 

various values of N. 
 

 
Fig.12. Species concentration profile for Sc=0.6 and 

various values of r. 
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  We have also calculated numerical values of the skin-friction fC
 
that are listed in Tabs 1-3. We 

observe from Tab.1 that a decrease in the radiation parameter N or an increase in the mass transfer parameter 
Gm or Grashof numbers Gr or time t, leads to an increase in the skin-friction. We also observe from Tabs 1, 
2 and 3 that the skin-friction decreases as r increases.                                                                                                              
 In Tab.4, numerical values of the skin-friction fC , in the absence of radiation, are listed. We 

compare these values of fC  with those in Tabs 1-3 and conclude that the value of the skin-friction in the 

presence of radiation is greater than that in the non-radiation case, other parameters being fixed. 
 Hence, the presence of radiation causes a rise in the skin-friction when other parameters are fixed. 
Also, we observe that the presence of species concentration causes a rise in the skin-friction when other 
parameters are fixed. 
 In Tab.3, numerical values of the skin-friction fC , in the absence of radiation, are listed. We 

compare these values of fC  with those in Tabs 1-2 and conclude that the value of skin-friction is less than 

that in the non-radiation case. Hence, the presence of radiation causes a fall in the skin-friction at various 
values of t and Gr. Also observe that the presence of species concentration causes a rise in the skin-friction at 
various values of t and Gr. 
 
Table 1. Numerical values of skin-friction of 

isothermal plates for Pr=0.71, Sc=0.6. 
 Table 2. Numerical values of skin-friction in the case of 

plate temp varying linearly for Pr=0.71, Sc=0.6. 
 

Gr Gm N T C.F.  Gr Gm N T C.F. 
2 2 3 0.2 2.324035  2 2 3 0.2 0.3098713 
4 4 3 0.2 4.64807  4 4 3 0.2 0.6197426 
6 6 3 0.2 6.972105  6 6 3 0.2 0.929614 
2 2 5 0.2 2.291746  2 2 5 0.2 0.3055661 
4 4 5 0.2 4.583491  4 4 5 0.2 0.6111322 
6 6 5 0.2 6.875237  6 6 5 0.2 0.9166982 
2 2 15 0.2 2.25419  2 2 15 0.2 0.3005587 
4 4 15 0.2 4.50838  4 4 15 0.2 0.6011174 
6 6 15 0.2 6.76257  6 6 15 0.2 0.901676 
2 2 3 0.4 3.286682  2 2 3 0.4 0.8764485 
4 4 3 0.4 6.573363  4 4 3 0.4 1.752897 
6 6 3 0.4 9.860045  6 6 3 0.4 2.629345 
2 2 5 0.4 3.241018  2 2 5 0.4 0.8642714 
4 4 5 0.4 6.482036  4 4 5 0.4 1.728543 
6 6 5 0.4 9.723053  6 6 5 0.4 2.592814 
2 2 15 0.4 3.187906  2 2 15 0.4 0.8501083 
4 4 15 0.4 6.375812  4 4 15 0.4 1.700217 
6 6 15 0.4 9.563718  6 6 15 0.4 2.550325 
2 0 3 0.4 1.678092  2 0 3 0.4 0.4474911 
4 0 3 0.4 3.356183  4 0 3 0.4 0.8949822 
6 0 3 0.4 5.034276  6 0 3 0.4 1.342474 
2 0 5 0.4 1.632428  2 0 5 0.4 0.4353141 
4 0 5 0.4 3.264855  4 0 5 0.4 0.8706281 
6 0 5 0.4 4.897283  6 0 5 0.4 1.305942 
2 0 15 0.4 1.579316  2 0 15 0.4 0.421151 
4 0 15 0.4 3.158632  4 0 15 0.4 0.8423019 
6 0 15 0.4 4.737948  6 0 15 0.4 1.263453 
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Table 3. Numerical values of skin-friction for Pr=0.71, Sc=0.6, t=0.4 and α=1(no radiation case). 
 

r Gr Gm C.F. 
1 2 2 3.157801 
1 4 4 6.315601 
1 6 6 9.473401 
1 2 0 1.549211 
1 4 0 3.098421 
1 6 0 4.647632 
2 2 2 0.8420802 
2 4 4 1.68416 
2 6 6 2.526241 
2 2 0 0.4131228 
2 4 0 0.8262456 
2 6 0 1.239368 

 

Table 4. Numerical values of skin-friction for Pr=0.71, Sc=0.6, t=0.4 and α=1 (no radiation case). 

r Gr Gm C.F. 
1 2 2 3.157801 
1 4 4 6.315601 
1 6 6 9.473401 
1 2 0 1.549211 
1 4 0 3.098421 
1 6 0 4.647632 
2 2 2 0.8420802 
2 4 4 1.68416 
2 6 6 2.526241 
2 2 0 0.4131228 
2 4 0 0.8262456 
2 6 0 1.239368 
3 2 2 0.2694657 
3 4 4 0.5389313 
3 6 6 0.8083969 
3 2 0 0.1321993 
3 4 0 0.2643986 
3 6 0 0.3965979 

 
Nomenclature  
 
 C  species concentration  
 fC   skin friction coefficient   

 Cp  specific heat at constant pressure 
 C   concentration at infinity   

 D  chemical molecular diffusivity 
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 Gm  Grashof number for mass transfer  
 Gr  Grashof number  
 g  acceleration due to gravity  

 cerf ( )ni z   repeated integral of complementary error function 

 N  radiation parameter   
 Pr  Prandtl number  
 Sc  Schmidt number  
  T  temperature of the fluid 
  T   temperature of the fluid far away from the plate  

 wT   plate temperature  

 t  time 
 u  velocity component  
 u0  constant with dimension of velocity   
 qr  radiative heat flux  
    kinematic viscosity 
    coefficient of volume expansion  

    volumetric coefficient of expansion with species concentration 

    dimensionless temperature 
    thermal conductivity of the fluid  

    mean absorption coefficient 
    density  

    Stefan-Boltzmann constant  
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