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In this paper we present numerical solutions to coupled non-linear governing equations of thermo-viscous 
fluid flow in cylindrical geometry using MATHEMATICA software solver. The numerical results are presented 
in terms of velocity, temperature and pressure distribution for various values of the material parameters such as 
the thermo-mechanical stress coefficient, thermal conductivity coefficient, Reiner Rivlin cross viscosity 
coefficient and the Prandtl number in the form of tables and graphs. Also, the solutions to governing equations for 
slow steady motion of a fluid have been obtained numerically and compared with the existing analytical results 
and are found to be in excellent agreement. The results of the present study will hopefully enable a better 
understanding applications of the flow under consideration.  
 
Key words: Reiner Rivlin Cross viscosity, thermal conductivity, thermo-stress viscosity, Prandtl number. 

 
1. Introduction 
 
1.1. Literature 
 
 The basic equations of classical hydrodynamics are non-linear in the velocities and only a few 
instances have been reported in literature in which exact solutions could be obtained. The same situation 
applies to a higher extent in the case of non-Newtonian fluids, since even the constitutive relations qualifying 
these fluids are non-linear. The failure of the linear theories in predicting to a reasonable extent the 
mechanical behaviour of materials such as liquid polymers, fluid plastic, molten metals etc., subjected to 
stresses has been the motivating force behind the study of the non-linear theories for material description. 
The non-Newtonian nature of materials has been the subject of an extensive study for over one and half 
centuries. It is only in the last seven or eight decades that serious attempts have been made to extend these 
investigation in the realm of non-linearity. With the growing importance of non-Newtonian fluids in modern 
technology and industries, the investigations on such fluids are desirable. The non-linear theory reflecting the 
interaction/interrelation between thermal and viscous effects has been preliminarily studied by Koh and 
Eringen [5]. A systematic rational approach for such class of fluids has been developed by Green and Nagdhi 
[2, 3]. Kelly[4] examined some simple shear flows of second order thermo-viscous fluids.  
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 The problem of a steady flow of a second order thermo- viscous fluid over an infinite plate was 
studied by Rao and Ramacharyulu [11]. The steady flow of a thermo-viscous fluid through straight tubes was 
examined by Rao and Ramacharyulu [12]. In this paper, the velocity and temperature fields have been 
obtained by employing a four step recursive approach. A steady slow motion through a circular tube was 
studied by Rao and Ramacharyulu [13]. The effects of large and small values of the thermo physical 
parameters on the flow field have been discussed in this paper. Rao and Ramacharyulu [10] examined some 
steady state problems dealing with certain flows of thermo-viscous fluids. Anuradha [1] and Nagaratnam [9] 
studied the flow in plane, cylindrical and spherical geometries. Recently, Pothanna et al. [18] et al studied 
unsteady forced oscillations of a fluid bounded by a rigid bottom. Pothanna et al. [15, 16, 17] also 
investigated certain flows of thermo-viscous fluids in a porous slab bounded between two horizontal parallel 
plates and the effects of various physical parameters on the flow field have been discussed. Srinivas et al. 
[19] studied a slow steady motion of a thermo-viscous fluid between two parallel plates with constant 
pressure and temperature gradients. 
 Curved pipe/annular configurations are of immense practical importance in almost all piping 
systems, the human cardiovascular system and in several engineering devices such as heat and mass 
exchanges, chemical reactors, chromatography columns and other processing equipment. Owing to the wide 
range of applications, the interest in the study of flow characteristics in these configurations has grown 
enormously during the last decades. Green and Nagdhi [3] has given a new thermo-viscous theory for fluids. 
Green and Nagdhi [2] explained a dynamical theory of interacting continua. Longlois [6] examined a slow 
steady flow of viscoelastic fluids through non-linear tubes. Muthuraj and Srinivas [7] studied the flow of a 
Thermo-viscous fluid through an annular tube with constriction. The motion is assumed to be slow and the 
governing equations have been solved in terms of the modified Bessel functions. Srinivas and Muthuraj [20] 
also examined the flow of a thermo-viscous fluid in a radially non-symmetric constricted tube. Srinivas et al. 
[21], studied peristaltic transport of a thermo-viscous fluid. Hossain et al. [8], studied a fluctuating flow of a 
thermo-micropolar fluid past a vertical surface. Anuradha et al. [1] investigated the problem of a steady flow 
of a thermo-viscous fluid through a moving circular pipe .  
 It can be noted, from the past studies, that the governing equations of the fluid flow in cylindrical 
geometry are linear in nature and the closed form solutions are obtained using various analytical methods. 
However, in reality the flow and heat transfer problems are non-linear in nature. The basic governing 
equations of the present study are coupled and highly non linear in nature. Hence, it is important to study the 
solutions of non-dimensional non-linear partial differential equations which govern the momentum and 
energy. They are solved numerically with the help of MATHEMATICA software solvers. As far as known, 
this problem has not been discussed in the literature. 

 
1.2. Basic equations 

 
 The flow of an incompressible homogeneous thermo-viscous fluid satisfies the usual conservation 
equations. 
 The equation of continuity(law of conservation of mass) 
 
  ,i iv 0 .           (1.1) 

 
 The equation of momentum(law of conservation of momentum) 
 

  , ,
i

k i k i ji j
v

v v f t
t

       
,                              (1.2) 

 

and the energy equation(law of conservation of energy) 
 

  ,ij ij i ic t d q


                                    (1.3) 
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where   
th

if i  component of external force per unit mass   

c   specific heat 
   density of the fluid   

  energy source per unit mass       
th

iq i  component of heat flux bivector = /ijk jkh 2  

, ,( )ij i j j id u u 2  = rate of deformation tensor 

ij ijk kb   = thermal gradient bivector 

where iu  is the thi  component of velocity and   is the temperature field. 
 As proposed by Koh and Eringen [5], the constitutive equations for the stress tensor and heat flux 
bivector of second order thermo-viscous fluids coupled in d and b are given by 
 

                2 2
1 3 5 6 8t I d d b db bd         , (1.4) 

and 
      1 3h b bd db    (1.5) 

                                                     

where the coefficients ' s
i  and ' s

i  are scalar  polynomials in  ,  ,  .2 2tr d tr d tr b  Explicit expressions for the 

constitutive coefficients 's
i  and ' s

i  for the second order theory may be obtained as 
 

            2 2
1 1000 1010 1020 1002tr d tr d tr b     , 

 
      3 3010 3020tr d   , 
   
    5 5020  , 
  
     6 6002  , 
       
     8 8011                                                                      

 

        1 1001 1011tr d   ,   
and 
    3 1011  , 
          
the secondary coefficients isrt . and isrt  are functions of   and  . 
 The fluids defined by the constitutive Eqs (1.4) and (1.5) with constant values for the constitutive 

coefficients 's
i  and ' s

i  may be called second order thermo-viscous fluids. This is the simplest model of a 
thermo-viscous fluid which exhibits an interaction between mechanical and thermal phenomena. 

  
2. Mathematical analysis 
 
 Consider the steady flow of a second order thermo-viscous fluid around a circular pipe moving with 
a given velocity (Fig.1). Introducing the cylindrical polar coordinate system ( , , )r z where the z-axis is along 
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the axis of the pipe and r  is the radial distance from the centre of the circular pipe. The flow is represented 
by the velocity ( , , ( ))0 0 w r  and the temperature ( )r . This choice of velocity evidently satisfies the 
continuity equation. 
 

 
 

Fig.1. Schematic representation of fluid flow. 
 

 The flow is assumed to be under the action of constant temperature and  pressure gradients. It is also 
assumed that the pipe is moving with a constant velocity aw  and a  is the temperature prescribed on the 
boundary. Under these assumptions the basic equations characterizing the flow are the following: 
 In the radial direction 
 

  
2 22

c 6 r2

p 1 w w w 1
2 F

r r r r r rr

                          
. (2.1) 

 
 In the transverse direction 
 

  2 2
8

w
F w

r r
          

. (2.2) 

 
 In the axial direction (z-direction) 
 

  2 2
6 2 z

p
u c F

z


    


, (2.3) 

 
and the energy equation 
 

  
2

2 2
6 3

1 w w
cu k u

z r r z r r z

                                            
. (2.4)  

 

 The appropriate boundary conditions of the problem are 
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( ) , ( ) finite, ( ) ,

( ) , ( ) finite

a a

a

w r a w w r p r a p

r a r

      

       
                         (2.5) 

where aw , ap  and a  are respectively the constant velocity, pressure and temperature prescribed on the 
boundary. 

 Further, it is assumed that the flow is generated with the constant pressure gradient  1
p

C
z


 


 and 

the temperature gradient  2C
z





. ( , , )r zF F F  are the components of the external force/volume. It is 

assumed that there is no external force down the tube length, i.e., , andr zF F F  are zero. 
 Introducing the following non-dimensional quantities 
 

  

, , , , , ,

, and (Prandtl number).

2 2
6 a 3

a 6 32 2

4
a a

1 r2
r

a a
r aR w W p P T a b

a

c c
m m p

p ka

  
       

 

   
  

         (2.6) 

 
 Using the above non-dimensional quantities, the equations of momentum in the radial and axial 
direction and the energy equation in non-dimensional form now reduce to: 
 In the radial direction 
 

  
2 22

c 1 62

P 1 W W W 1 T
2 m a

R R R R R RR

                        
.   (2.7) 

 
 In the axial direction 
 

  2 2
1 6 2C W a C T     ,                                                                                       (2.8)  

 
and the energy equation  
 

  
2

2 2
2 6 2 3 2

1 W W T
cC W a C k T b C W

R R R R

                       
    (2.9)  

 

where 
2

2
2

1

R RR

 
  


 and 6a  is the non-dimensional thermo-mechanical stress viscosity coefficient and 

3b  is the non-dimensional strain thermal conductivity coefficient. 
 The boundary conditions of the problem reduce to 
 

  

( ) , ( ) finite, ( ) ,

( ) and ( ) finite.

a aW R 1 W W R P R 1 P

T R 1 1 T R

      

    
        (2.10) 
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3. Numerical study of the problem 
 
 The governing coupled highly non-linear differential Eqs (2.7)-(2.9) together with the boundary 
conditions (2.10) for the velocity, temperature and pressure distributions are solved by using the R-K method 
of 6th order with shooting methods with the help of MATHEMATICA software ND solver. The boundary 
conditions for both the velocity and temperature as r   are considered as finite values. For computation 
purpose, the coordinate r (radial distance) is considered as varied from 1 to 2 where the value r 2  
represents infinity. The convergence of the method is guaranteed by the satisfaction of the boundary 
conditions. The influence of various physical parameters such as the thermo-mechanical stress interaction 
coefficient ( )6a , strain thermal conductivity coefficient ( )3b , cross viscosity coefficient ( )c  and Prandtl 

number ( )rp , on the velocity, temperature field and pressure distribution is shown in the form of tables and 
graphs. The numerical results presented in Tabs 1-3 show the solutions to highly non-linear coupled 
governing equations of velocity, temperature and pressure distribution with the various physical parameters. 
 
Table 1. Numerical results of velocity field with various material parameters. 
 
 
 
R 

Velocity distribution ( )W R  with c=1, ρ=1, c1=1, c2=1, μ=1, c 1  , a 1  , ap 1 , aw 1 , rp 1
                              3b 1                               3b 3                              3b 5  

6a 1  6a 2  6a 3  6a 1  6a 2  6a 3  6a 1  6a 2  6a 3  

1 1 1 1 1 1 1 1 1 1
1.1 1.520899 1.113976 1.004379 1.535279 1.303372 1.145115 1.540151 1.381759 1.253298
1.2 1.988644 1.262008 1.019939 2.019922 1.623575 1.326993 2.030555 1.763813 1.534417
1.3 2.417157 1.451608 1.055749 2.464818 1.96196 1.551572 2.481051 2.147631 1.844797
1.4 2.817069 1.691822 1.126606 2.878359 2.320094 1.82551 2.899243 2.534623 2.186063
1.5 3.19677 1.993568 1.256102 3.267178 2.699761 2.156295 3.291147 2.926167 2.56004
1.6 3.5631 2.370057 1.481134 3.636637 3.102968 2.552367 3.661616 3.323621 2.968764
1.7 3.921819 2.837303 1.858463 3.991165 3.53196 3.023259 4.01464 3.728345 3.414492
1.8 4.277934 3.414749 2.474211 4.334496 3.989233 3.57975 4.353556 4.141712 3.899723
1.9 4.63594 4.126047 3.457502 4.669838 4.477557 4.234049 4.681195 4.565119 4.427214
2 5 5 5 5 5 5 5 5 5
 
Table 2. Numerical results of temperature distribution with various material parameters. 
 
 
 
    
R 

Temperature distribution ( )T R  with c=1, ρ=1, c1=1, c2=1, μ=1, c 1  , a 1  , ap 1 , aw 1 , rp 1  

                                3b 1                               3b 3                              3b 5  

6a 1  6a 2  6a 3  6a 1  6a 2  6a 3  6a 1  6a 2  6a 3  

1 1 1 1 1 1 1 1 1 1
1.1 1.470272 1.306681 1.243159 1.484652 1.38295 1.290809 1.489523 1.401379 1.328263
1.2 1.901368 1.613435 1.544661 1.932646 1.789764 1.665425 1.943279 1.794218 1.692264
1.3 2.305774 1.927136 1.831554 2.353434 2.184141 2.028452 2.369667 2.182311 2.048289
1.4 2.692999 2.25473 2.111691 2.754289 2.569085 2.383622 2.775173 2.568866 2.401871
1.5 3.070548 2.603598 2.394938 3.140956 2.947101 2.734056 3.164925 2.956695 2.758095
1.6 3.444546 2.981895 2.694728 3.518083 3.32033 3.082436 3.543062 3.348351 3.121823
1.7 3.820168 3.398895 3.030201 3.889514 3.69064 3.431136 3.912989 3.746224 3.497864
1.8 4.201937 3.86537 3.429204 4.258498 4.059697 3.78231 4.277558 4.152611 3.891114
1.9 4.593941 4.394022 3.932539 4.627838 4.429016 4.137963 4.639195 4.569777 4.306681
2 5 5 5 5 5 5 5 5 5
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Table 3. Numerical results of pressure distribution with various material parameters. 
 

R 

Pressure distribution ( )P R  with c=1, ρ=1, c1=1, c2=1, 

μ=1, c 1  , a 1  , ap 1 , aw 1 , rp 1  3b 1  

Pressure distribution ( )P R  with c=1, ρ=1, c1=1, c2=1, 

μ=1, c 1  , a 1  , ap 1 , aw 1 , c 1  , 3b 1  

6a 1  6a 2  6a 1  6a 2  

c 1   c 2   c 3   c 1   c 2  c 3  rp 1 rp 2 rp 3  rp 1  rp 2 rp 3

1 1 1 1 1 1 1 1 1 1 1 1 1 
1.1 -4.95445 -8.79601 -12.6376 0.034708 0.862605 1.690501 -4.95445 -4.39928 -4.11997 0.034708 -0.10358 -0.14444 

1.2 -8.93598 -15.1395 -21.343 -0.2942 1.842051 3.978302 -8.93598 -7.83247 -7.2907 -0.2942 -0.66319 -0.79248 

1.3 -11.6486 -19.2545 -26.8603 0.163168 4.331613 8.500055 -11.6486 -10.0222 -9.23607 0.163168 -0.48801 -0.75017 

1.4 -13.5048 -21.8552 -30.2055 1.688983 8.973191 16.2574 -13.5048 -11.3738 -10.3525 1.688983 0.808521 0.396727 

1.5 -14.7539 -23.3696 -31.9853 4.74091 16.7558 28.77068 -14.7539 -12.1186 -10.859 4.74091 3.906962 3.409901 

1.6 -15.5489 -24.0569 -32.5649 10.02445 29.16953 48.31458 -15.5489 -12.3867 -10.8707 10.02445 9.94935 9.620935 

1.7 -15.9834 -24.0706 -32.1578 18.60501 48.43877 78.27243 -15.9834 -12.2445 -10.4365 18.60501 20.81444 21.30836 

1.8 -16.112 -23.4949 -30.8777 32.07745 77.87124 123.6651 -16.112 -11.7147 -9.55806 32.07745 39.56382 42.33074 

1.9 -15.962 -22.3642 -28.7664 52.82066 122.3805 191.9402 -15.962 -10.7859 -8.19763 52.82066 71.16428 79.18548 

2 -15.5403 -20.6752 -25.8101 84.3785 189.265 294.1515 -15.5403 -9.41701 -6.27975 84.3785 123.6547 142.782 

 
4. Special case for slow steady motion of the fluid 
 
4.1. Governing equations  
 
 The motion is assumed to be slow such that the non-linear terms in the equation of momentum and 
energy could be neglected. The equation of momentum and energy now reduce to the following: 
 The equation of momentum in the axial direction 
 

  2 2
1 6 2C W a C T     ,       (4.1) 

 
and the energy equation  
 

  2 2
2 3 2cC W k T b C W     .       (4.2) 

 
 Equations (4.1) and (4.2) are coupled in terms of the velocity ( )W R  and the temperature ( )T R . In 

these two equations 1C  and 2C  represent constant pressure and temperature gradients, respectively. 6a  is 

the thermo-mechanical stress viscosity coefficient and 3b  is the strain thermal conductivity coefficient. 
 The appropriate boundary conditions for the velocity and temperature are 
 
  ( ) , ( ) finite, ( ) and ( ) finiteaW R 1 W W R T R 1 1 T R          .     (4.4) 
 
4.2. Analytical and numerical solutions 
 
 According to Anuradha [1] et al. analytical solutions to the coupled linear Eqs (4.1) and (4.2) 
together with the boundary conditions (4.3) yield the velocity distribution   
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( ) ( )

( )
( ) ( )

0 01
a 2

0 0

K mR K mRd
W R W 1

K m K mm

 
   

 
,        (4.5) 

 
and the temperature field  
 

  
( ) ( )

( ) ( )
( ) ( )

20 01 1 1 1 1
a 32 4 2

0 0

K mR K mRm d m m d
T R 1 W 1 b R 1 1

K m K m 4m m m

                 
    

         (4.6) 

 
where ( )0K   is the modified Bessel function of order zero. 

 Here   1
6 3 r

1
d

1 a b p



,     2 6 r

6 3 r

a p
m

1 a b p



,     2 r

1
6 3 r

d p
m

1 a b p



,     

4
1 2

2 2
a

c c a
d




 
, 

 

  
2

26
6 22

a
a c

 



,     3

3 2
b

ca





,     r
c

p
k


 . 

 
 In order to get the analytical results of Eqs (4.4) and (4.5) for the velocity ( )W R  and the temperature 

( )T R  for various values of physical parameters, the code of the algorithm has been executed in MATLAB 
running on a PC. The results are presented in Tabs 4-5.  
 In the present study, the numerical solutions of Eqs (4.1) and (4.2) with respect to the boundary 
conditions (4.3) are obtained numerically using the MATHEMATICA  software package. An excellent 
convergence was achieved for all the results for slow steady motion of the fluid when compared to the 
analytical results. The numerical and analytical results for the velocity and temperature distributions are 
presented in Tabs 4-5. For computation purpose, the boundary conditions as r   for the finite value are 
replaced by the value 5, the coordinate r (radial distance) is considered as ranging from 1 to 2 where the 
value  r 2  represents infinity. The numerical results obtained are compared with the analytical results of 
Anuradha[1] et.al and are found to be good in  agreement. The analytical results obtained substantiate the 
validity and accuracy of the present numerical results. 
 
Table 4. Comparison of velocity profiles for various material parameters. 
 

 
R 

Present Results for        

3b 1  
Results of Anuradha  

for 3b 1  
Present Results for 

3b 3  
Results of Anuradha 

for 3b 3  

6a 1  6a 2  6a 1  6a 2  6a 1  6a 2  6a 1  6a 2  

1 1 1 1 1 1 1 1 1 
1.1 1.506824 1.477614 1.506810 1.477590 1.527799 1.517688 1.527791 1.517699 

1.2 1.971945 1.919882 1.971951 1.919862 2.010905 1.993084 2.010890 1.993076 

1.3 2.404484 2.335827 2.404495 2.335805 2.457747 2.434504 2.457748 2.434493 

1.4 2.811721 2.732729 2.811731 2.732739 2.87497 2.848521 2.87495 2.848500 

1.5 3.199603 3.116622 3.199585 3.116600 3.267924 3.240445 3.267900 3.240428 

1.6 3.573094 3.492626 3.573076 3.492636 3.640998 3.614647 3.640979 3.614635 

1.7 3.936419 3.86519 3.936400 3.865100 3.997852 3.974790 3.997851 3.974791 

1.8 4.293244 4.238265 4.293222 4.238274 4.341588 4.32399 4.341569 4.32376 

1.9 4.646803 4.615431 4.646793 4.615422 4.674866 4.664941 4.674865 4.664922 

2 5 5 5 5 5 5 5 5 
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Table 5. Comparison of temperature profiles for various material parameters. 
 
R Present Results for 

3b 1  
Results of Anuradha for 

3b 1  
Present Results for 

3b 3  
Results of Anuradha For 

3b 3  

6a 1  6a 2  6a 1  6a 2  6a 1  6a 2  6a 1   

1 1 1 1 1 1 1 1 1 
1.1 1.456196 1.48850 1.456177 1.488761 1.477171 1.508539 1.477190 1.508539 

1.2 1.884669 1.942372 1.884681 1.942382 1.923629 1.978976 1.923630 1.978970 

1.3 2.29310 2.369245 2.29291 2.369235 2.346363 2.418584 2.346333 2.418588 

1.4 2.687651 2.775183 2.687662 2.775164 2.75090 2.833082 2.75092 2.833069 

1.5 3.073381 3.165125 3.073393 3.165111 3.141702 3.227037 3.141700 3.227034 

1.6 3.454540 3.543180 3.454522 3.543171 3.522444 3.604380 3.522445 3.604389 

1.7 3.834768 3.912839 3.834749 3.912850 3.896201 3.967650 3.896208 3.967639 

1.8 4.217246 4.277127 4.217245 4.277108 4.26559 4.31999 4.26567 4.31998 

1.9 4.604803 4.638715 4.604784 4.638693 4.632866 4.66347 4.632860 4.66350 

2 5 5 5 5 5 5 5 5 

 
4. Results analysis and discussion 
 
 The results are illustrated graphically in Figs 2-14. To get the physical insight into the problem the 
velocity, temperature field, pressure distribution have been discussed by assigning numerical values to 
various material parameters such as the thermo-mechanical interaction coefficient ( )6a , the strain thermal 

conductivity coefficient ( )3b , cross viscosity coefficient ( )c and Prandtl number ( )rp  which characterise 
the flow phenomena. The influences of these parameters on the velocity, temperature and pressure 
distribution have been studied and are presented graphically. 
 
4.1. Velocity field 
 
 The impact variation of the thermo-mechanical stress interaction coefficient ( )6a  on the velocity 

field is presented graphically in Figs 2-4 and the influence of the strain thermal conductivity coefficient ( )3b  
on the velocity field is shown in Fig.5. Figures 2-4 show that the velocity of the fluid decreases as the values 
of the thermo-mechanical stress interaction coefficient ( )6a  increase and the velocity of the fluid increases 
with the increase of the distance from the pipe and attains maximum velocity far away from the tube 
boundary for R>>1. It is observed from Fig.5 that the velocity of the fluid increases at a slower rate for an 
increasing value of the thermal conductivity coefficient ( )3b . This signifies that the effect of the thermal 
conductivity coefficient on the flow field is much smaller. 
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Fig.2. Variation of velocity for 3b 1 .                 Fig.3. Variation of velocity for 3b 3 . 
 

 
 
 Fig.4. Variation of velocity for 3b 5 .                 Fig.5. Variation of velocity for 6a 1 . 
 
4.2. Temperature distribution 
 
 It is observed that the material parameter thermo-mechanical stress interaction coefficient ( )6a  is 
influenced by the temperature distribution and which is graphically shown in Figs 6-8. The effect of the 
strain thermal conductivity coefficient ( )3b  is depicted in Fig.9. It is noticed that the temperature distribution 

decreases with the increasing values of thermo-mechanical stress interaction coefficient ( )6a . This is due to 
the greater conversion of thermal energy to kinetic energy. The reverse effect is observed in the variation of 
temperature distribution for different values of the strain thermal conductivity coefficient ( )3b . From Fig.9, 
it is observed that the rate of increase of temperature distribution is very slow and  all the temperature 
profiles coincide far away from the tube boundary.  
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 Fig.6. Variation of temperature for 3b 1 .          Fig.7. Variation of temperature for 3b 3 . 
 

 
 

 Fig.8. Variation of temperature for 3b 5 .         Fig.9. Variation of temperature  or 6a 1 . 
 
4.3. Pressure distribution 
 
 The pressure distribution throughout the boundary is in the direction normal to the cylindrical 
surface and which is influenced by the Reiner Rivlin cross viscosity coefficient ( )c . The effects of the 

Prandtl number ( )rp  and cross viscosity coefficient ( )c  on the pressure distribution are presented in Figs 
10-13. From Fig.10, it can be noted that the pressure distribution decreases with the increase of the cross 
viscosity coefficient ( )c  whereas Fig.11 shows that the flow suddenly takes a reverse direction to the 

positive side and increases with the increase of the cross viscosity coefficient ( )c . This is due to the effect 
of the thermo-mechanical stress interaction coefficient of thermo viscous fluid flows. It is interesting to note 
that there is a marked departure between the flows of thermo-viscous fluids when compared to that of 
Newtonian fluids. The dimensionless parameter Prandtl number is the ratio between the kinematic viscosity 
and the thermal diffusivity, the effect of this on the pressure distribution is shown in Figs 12-13. Figure 12 
presents that the pressure distribution increases with the increase of the Prandtl number ( )rp  and suddenly 
takes in to the positive direction. This is also due to the influence of the thermo-mechanical stress interaction 
coefficient ( )6a . The physical influence of this in heat transfer problems is the Prandtl number controls the 
thickness of the velocity and thermal boundary layers. 
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     Fig.10. Variation of pressure distribution for 6a 1 . Fig.11. Variation of pressure distribution for 6a 2 . 
 

          
 
Fig.12. Variation of pressure distribution for 6a 1 .   Fig.13. Variation of pressure distribution for 6a 2 . 
 
(a)                                                                                  (b) 

                      
              

Fig.14. Comparison of (a) velocity and (b) temperature for a Newtonian fluid. 
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4.4. Comparison with a Newtonian case 
 
 To make a comparative study, in Figs 14a and b the variation of the velocity and temperature for a 
Newtonian-viscous fluid is presented graphically. For a Newtonian fluid the parabolic profile is realized for 
both the velocity and the temperature distributions. It can be noticed that the velocity of the thermo-viscous 
fluid is smaller compared to that of a classical Newtonian-viscous fluid, while the temperature of the thermo-
viscous fluid is much less compared to that of classical Newtonian-viscous fluid. It is observed that the 
temperature profiles of thermo-viscous fluids deviate very much from the classical viscous fluids. This is due 
to the fact that the decoupled nature of velocity and temperature of the fluid in momentum and energy 
equations. Therefore the interaction between thermal and mechanical responses of fluids in motion are lost in 
Newtonian type of fluids.  
 
5. CONCLUSIONS 
 

In this paper, the steady thermo-viscous incompressible fluid flows around a circular cylinder are 
studied numerically. The resulting governing steady, non-linear and coupled equations are solved by using 
MATHEMATICA software ND solver . The computations are carried out for different values of 6a , 3b , c , 

rp  and for the fixed values of other physical parameters. 
1. The fluid velocity decreases with the increase of the thermo-mechanical stress interaction coefficient 

( )6a  while it increases as the thermal conductivity coefficient ( )3b  increases. 
2. The fluid temperature decreases with the increase of the thermo-mechanical stress interaction coefficient 

( )6a  while it increases as the strain thermal conductivity coefficient ( )3b  increases. 

3. The fluid pressure decreases as increase in cross-viscosity coefficient ( )c  while increases as thermo-

mechanical stress interaction coefficient ( )6a  increases. 

4. The fluid pressure increases as increase in Prandtl number ( )rp  and thermo-mechanical stress interaction 

coefficient ( )6a . 
5. The numerical results obtained using MATHEMATICA ND solver are in good agreement with the 

analytical results obtained in terms of modified Bessel functions. 
 
Nomenclature 
 
 6a   dimensionless thermo mechanical stress interaction coefficient 

 ijb   thermal gradient bivector 

 3b   dimensionless strain thermal conductivity coefficient 

 1C   constant pressure gradient 

 2C   constant temperature gradient 

 c  specific heat 
 ijd   rate of deformation tensor 

 if   thi  component of external force per unit mass 

 rp   Prandtl number 

 R  dimensionless radial distance 
 r  radial distance 
 T  dimensionless temperature 
 jit   stress tensor 

 iu   thi  component of velocity 
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 iq   thi  component of heat flux bivector 

 W  dimensionless velocity  
 w   velocity of the fluid 
 z  coordinate axis along the tube 
 1 p     fluid pressure 

 3 2     coefficient of classical (Newtonian) viscosity 

 5 c4     coefficient of (Reiner-Rivlin) cross-viscosity 

 6   thermo mechanical stress interaction coefficient 

 8   thermo stress viscosity coefficient 

 'i s   viscosity coefficients 

 1 k    Fourier thermal conductivity coefficient 

 3   strain thermal conductivity coefficient 

 'i s   thermal conductivity coefficients 

    energy source per unit mass 

    temperature of the fluid 

 

   temperature derivative 

    angle in radial direction 
    density of the fluid 
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