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The model of a damped orthotropic rectangular plate resting on a Winkler foundation with a simple support 
has the fourth order differential equation governing it, which is reduced to a second order coupled differential 
equation by separating the variables. The coupled differential equation was solved using numerical schemes .The 
classical condition used as an illustrative example is the simple support condition. It is observed that damping 
plays a very significant role in the vibration of solid structures, as it has been shown that the deflection profile 
depends greatly on the damping ratio. The deflection profile also proves to be more stable in the presence of 
foundation coupled with viscous damping. The results obtained were discussed and graphically presented.   
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1. Background 
 
 Vibration of rectangular plates is an interesting subject because of its wide applications in structural 
engineering and transport engineering. Structures such as railway bridges, highway bridges, cranes, road 
pavements etc., can actually be modeled as rectangular plates. Much research has been done on rectangular 
plates. In Zimmermann, et al. [1] the differential equation relating to the breaking of railway bridges was 
developed and well discussed. Some other research works focused more on vibration of solids and structures 
under moving loads, such work includes Dobyns [2] who analyzed a simply supported orthotropic plate 
subjected to static and dynamic loads, which included the numerical solution of a plate subjected to blast 
loads that were modeled as a triangular function, an exponential function and a stepped triangular function. 
Fryba [3], found that the theoretical considerations are applicable in calculations relating to dynamic stresses 
in railway and highway bridges, suspension bridges, rails, sleepers, cranes etc. In mechanics moving loads 
are defined as loads that vary in both time and space. In Gbadeyan and Dada [4] the dynamic response of 
plates on an elastic foundation to distributed moving loads was investigated and it was reported that the 
natural frequency of rectangular plates traversed by moving concentrated forces is greater than that of plates 
subjected to moving concentrated masses and that the presence of foundation modulus reduces the deflection 
of the plate. 
        In most of the works, the type of plates considered are such which found applications in the 
modeling of the dynamic response of rigid concrete pavements. In Alisjarbana and Wangsadinata [5], an 
orthotropic rectangular plate was used to model the dynamics of a rigid roadway pavement under a dynamic 
load, the method used was the modified Bolotin Method. The dynamic moving traffic load is expressed as a 
concentrated load of harmonically varying magnitude, moving straight along the plate with a constant 
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velocity, it was found that this dynamic load approach may lead to more economic solutions as compared to 
those obtained from the conventional static load approach.                 
         Viscous damping is the dissipation of energy and the consequence reduction or decay of motion. To 
understand the control and mechanical response of vibrating structures, viscous damping should be properly 
definedd. Most of the early works neglected damping, but recently, interesting studies and results have 
emerged on the effects of viscous damping on the vibration of rectangular plates on an elastic foundation. 
Some of such works include Gbadeyan, et al. [6]. It was found that the deflection profile of the plate depends 
on the magnitude of the damping coefficient. Alisjahbana and Wangsadinata [7] studied the behavior of 
orthotropic damped plates with different stiffener configurations subjected to a stepped triangular blast 
loading. In Idowu, et al. [8], the effect of viscous damping on the dynamic response of isotropic rectangular 
plates on Pasternak foundations are studied and it was shown that viscous damping in the presence of a 
Pasternak foundation actually reduces the build-up of amplitude, thereby reducing the possibility of 
resonance. In this work, we pay attention to the vibration of the dynamic behavior of a damped orthotropic 
rectangular plate resting on a Winkler foundation subjected to dynamic loads.                       
 
2. Problem formulation 
 
 The governing equation of the problem is given as 
 

  
   

γ ( , , )
4 4 4 2

1 2 34 2 2 4 2

w w w w w
2 M 2M Kw p x y t

tx x y y t

     
         

     
                (2.1) 

 

where    , , 
( )

3

1 2 3
Eh

12 1 v
   


, 

 
w = w(x, y, t) is the deflection of the plate. 
t = time in seconds. 
  =viscous damping coefficient. 

  1  flexural rigidity in the x direction.  

2 = effective torsional rigidity.  

3 = flexural rigidity in the y direction.  

v = Poisson’s ratio 
E= Young’s modulus 
M= mass density per unit area 
h= thickness of the plate 
P(x, y, t)=  the applied load, which is 
 

  P(x, y, t)= ( )
2

12

1 d W r r
mg m H x vt H x vt y y

r 2 2dt

                          
                   (2.2) 

 
r= length of the load. 
H(x)= Heaviside step function 

( )x = Dirac delta function 
g= acceleration due to gravity. 
v= velocity. 
K= foundation stiffness. 
 The above governing partial differential Eq.(2.1) was developed under the following assumptions: 



Vibrational analysis of damped orthotropic rectangular plates ... 1077 

- the small strain in the system is still governed by Hook’s law, 
-the plate is resting on an elastic foundation. 
-the load is taken to be a distributed time load, 
-there is no deformation in the middle of the plate, i.e the plate remains the same before and after bending.  
 
3. Method of solution 
 
 The governing equation of the problem is solved using separation of variable in series form. We 
assume the following;  
Let 
 

   W(x, y, t)=   ( ) ( )
N M

mn n m
n 1m 1

A t W x W y
 
                                                             (3.1) 

 
where n=1, 2, 3,…,N and m=1, 2, 3,…M,  
M and N are fixed positive integers and Amn(t) is a function of time.   
 If we substitute Eq.(3.1) into Eq.(2.1), we get; 
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 When we substitute p(x, y, t), from Eq.(2.2). 
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            (3.3)                     

 
 The equation governing the undamped free vibration of an orthotropic rectangular plate is as follows 
(Idowu and Aguda [9]) 
 

  
   

  
w w w

x x y y

4 4 4
2

1 2 34 2 2 4
2 Kw Mw 0

   
         

    
.                    (3.4) 

 

By substituting Eq.(3.1) into Eq.(3.4), and taking ,2
mn M    we have that 
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 (3.5) 

 
 On substituting Eq.(3.5) into Eq.(3.3), and putting Eq.(3.1) in the RHS of Eq.(3.3), we have the 
simplified equation governing the vibration problem of a damped orthotropic rectangular plate resting on a 
Winkler foundation subjected to dynamic loading. 
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 Multiply both sides of Eq.(3.6) by ( ) ( )i jw x w y  and integrate along the edges of the rectangular plate 

of dimension (a x b). And further apply the orthogonality of      and  n mw x w y  with the following relation 

between the Dirac delta function and the Heaviside unit function. 
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(3.7) 

 
where   is an arbitrary constant. 
 Equation (3.7) is the generalized ordinary coupled differential equation to be solved for some 
specific boundary conditions. 
 
4. Simply supported rectangular plate (as an illustrative example) 
 
 We have different kinds of classical edge supports, but for the sake of this study we limit our 
consideration to simply supported edges alone. 
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 The boundary condition for simply supported rectangular plates is given as; 
 
         , , , , , , , ,xx xxw 0 y t w a y t w 0 y t w a y t 0    , 

         , , , , , , , ,yy yyw x 0 t w x b t w x 0 t w x t 0    , 

  
with the initial condition 
                                                                                                
     , , , ,tw x y 0 w x y 0 0  .                                                                      (4.1) 

  
 The normalized deflection curve for the simply supported boundary condition for a rectangular plate 
has been obtained in Gbadeyan and Dada [4] 
 

      sin sin  n m
2 n x m y

w x w y
a bab

 
               (4.2) 

 
where n = 1, 2, 3,…, and m = 1, 2, 3,….  
 To obtain the eigen values, we substitute (4.2) into (3.5) to have 
 

  
4 4 2 2 4 4 4

mn 1 2 34 2 2 4

n n m m
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  
.                                    (4.3) 

 
 The exact governing equation for a simply supported damped orthotropic rectangular plate resting on 
a Winkler foundation can be obtained by putting Eq.(4.2) into Eq.(3.7). 
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where i ≠ n 
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5. Results and discussion 
 
 Equations (4.4) and (4.5) are second order coupled differential equations. Equation (4.4) is for i   n, 
and Eq.(4.5) is for n  i. The coupled differential equations are solved using the finite difference method, i.e., 
the central difference method. The resulting tridiagonal matrix is of the form; 
 

          2 2
i i 1 i i i i 1 i2 hP t T 4 2h Q t T 2 hP t T 2h R t                 

 
where h is chosen appropriately, and , , ,i 1 2 3 n  . 
 The resulting tridiagonal matrices were solved using MATLAB. The following values are assumed 
for the corresponding variables: , ,  a 10 b 5 v   12m/s, 24m/s and 36m/s, K=0, 20, 80. The values used for 

the flexural rigidity in the x-direction ( 1 ), the effective torsonal rigidity ( 2 ) and the flexural rigidity in the 

y-direction ( 3 ), is that of Veneer, given as 0.297, 0.21 and 0.69, respectively. The values of the damping 

ratios (  ) are assumed to be 0, 100, 150, respectively.  
 

 
  

Fig.1. Deflection versus time at various damping ratios. 
 

 
   

Fig.2. Mid-plate deflection versus time at various values of K. 
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Fig.3. Deflection versus time at various velocities. 
 
 In Fig.1, we see that the maximum deflection is much higher when the damping ratio is (  )=0, and 
as the damping ratio increases, the deflection reduces and the vibration also stabilizes with time.  
 In Fig.2, we can see that when the foundation modulus is reduced to zero, the mid-plate deflection 
increased and when the foundation modulus K, is increased, the maximum deflection is reduced. 
 In Fig.3, various velocities are presented. We see that at a high velocity, the maximum deflection is 
attained at a shorter time.    
 
6. Conclusion 
 
 Damping plays a very significant role in the vibration of solid structures. It has been shown that the 
deflection profile depends greatly on the damping ratio. The deflection profile also proves to be more stable 
in the presence of a foundation coupled with viscous damping. These results further show that very high 
speed can be detrimental to solid structures, especially highway bridges and other structures subjected to 
dynamic loads. 
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Nomenclature 
 
 E  Young’s modulus 
 g  acceleration due to gravity 
 H(x)  Heaviside step function 
 h  thickness of plate 
 K  foundation stiffness 
 M  mass density per unit area 
 P(x, y, t)  the applied load 
 r  length of the load 
 v  velocity 
 1   flexural rigidity in the x direction 

 2   effective torsional rigidity 

 3   flexural rigidity in the y direction 

    viscous damping coefficient 
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 v   Poisson’s ratio 
 ( )x   Dirac delta function 
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