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The main purpose is to present the stochastic perturbation-based Finite Element Method analysis of the 
stability in the issues related to the influence of high temperature resulting from a fire directly connected with the 
reliability analysis of such structures. The thin-walled beam structures with constant cross-sectional thickness are 
uploaded with typical constant loads, variable loads and, additionally, a temperature increase and we look for the 
first critical value equivalent to the global stability loss. Such an analysis is carried out in the probabilistic context 
to determine as precisely as possible the safety margins according to the civil engineering Eurocode statements. To 
achieve this goal we employ the additional design-oriented Finite Element Method program and computer algebra 
system to get the analytical polynomial functions relating the critical pressure (or force) and several random design 
parameters; all the models are state-dependent as we consider an additional reduction of the strength parameters 
due to the temperature increase. The first four probabilistic moments of the critical forces are computed assuming 
that the input random parameters have all Gaussian probability functions truncated to the positive values only. 
Finally, the reliability index is calculated according to the First Order Reliability Method (FORM) by an 
application of the limit function as a difference in-between critical pressure and maximum compression stress 
determined in the given structures to verify their durability according to the demands of EU engineering designing 
codes related to the fire situation. 
 
Key words:  stability analysis, linearized buckling, fire simulation, stochastic perturbation method, stochastic 

finite element method, response function method, reliability analysis.  

 
1. Introduction  

 
 Probabilistic analysis of the structures (Elishakoff [1], Kamiński [2]) includes still many unresolved 
problems, especially when related to the steel structures area (Waarts and Vrouwelvender [3]). Modern and 
recent applications deal with the castellated steel beams (Ellobody [4]), stiffened panels (Graham and Siragy 
[5]) or structural elements subjected to a corrosion process (Sadovský and Drdàcký [6]). The other works 
were more focused on computational methods and issues, where geometrical imperfections of the uncertain 
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nature are included (Papadopoulos et al. [7]). Also, the very interesting and challenging problems of the 
post-buckling paths were analyzed (Steinböck et al. [8]). However, determination of the higher probabilistic 
moments of both structural response and buckling modes is still very rare and the classical Monte-Carlo 
simulation is preferred. This is especially important in the area of thermo-elastic problems with temperature-
dependent material coefficients and practically important in many coupled problems like fire accidents, 
where a temperature may be higher than thousand degrees within the first few minutes of fire ignition. The 
very rapid fluctuations of the temperature, which practically is unpredictable, may lead to almost a complete 
loss of the structural steel strength and elasticity. Such a practical analysis deserves a detailed computer 
analysis, especially with the technique preserving the efficiency of the Monte-Carlo simulation but 
consuming definitely less time.         
 The main goal of numerical analyze contained in this paper is to determine the parameters of random 
critical force steel structures with a random temperature using the stochastic perturbation method and 
compare the results with the results of the Monte-Carlo simulation (Kamiński [2]; Kalos and Whitlock [9]). 
As it was experimentally verified all the structural elements are highly sensitive to the fire and the same is 
true for their stability limits. Such an analysis will allow the design of fire safety of steel elements especially 
in terms of their reliability (Eurocode 3 [10]). In the analysis of the behavior of structures in fire 
temperatures the ultimate limit state, which is understood as the exhaustion of portability charges by item or 
excessive deformation of the structure. Exhaustion of the slender construction of the load may lead to the 
loss of stability due to the strength reduction of the basic parameters. The essence of the issues is the random 
behavior of the structure under higher temperature, where the temperature contributes to the determination of 
random variables as strength parameters. It should be noted that numerical simulation of a real fire is 
complex due to the fact that a temperature, which is for sure mostly uncertain, induces automatically the 
entire set of random mechanical and physical parameters influencing dramatically all the structural state 
parameters. This analysis is an attempt to connect the structure stability issues with the operation of the 
higher temperature for the reliability assessment of stochastic structures. In the analysis of elastic stability 
the Stochastic Finite Element Method (SFEM) (Kleiber and Hien [11]; Kamiński [2]) combined with the 
Response Function Method are used. First the polynomial response functions in-between the Young modulus 
connected with higher temperature and a critical force are found through the series with FEM experiments 
with a varying design parameter value. A computer system is totally responsible for the Least Squares 
Method approximation of these analytical functions. The results of the stochastic perturbation method were 
compared with the results of alternative techniques such as the Monte-Carlo simulation. The generalized 
stochastic perturbation technique employed here in its tenth order version to calculate expected values, 
coefficients of variation, skewness and kurtosis of the critical pressure with respect to the input coefficient of 
variation fluctuations to verify whether the Gaussian character of the random input is preserved in the 
linearized buckling problem (Elishakoff [12]).  
 Additionally, we take into account the fact that mechanical properties of the steel are significantly 
reduced together with a temperature increase due to the fire. Some experimentally driven functions are 
adopted after the recommended civil engineering design codes here (and also numerically smoothed 
throughout the discrete values via the Least Squares Method with higher order splines). One may recover 
from our analyses the time fluctuations of the basic probabilistic characteristics of the critical force after an 
application of the so-called fire curves that describe temperature variations in time during such a normative 
fire. Therefore, in fact random Gaussian input temperature induces non-stationary stochastic process of the 
buckling resistivity of the given structures (Øksendal [13]). We assume some steady-state distribution of the 
temperature inside the element or the structure for the brevity of further presentation and discussion, but a 
more realistic approach would be to analyze a coupled thermal-mechanical problem with transient heat 
transfer accounting for temperature-dependent steel parameters and some additional uncertainty source(s). 
Our methodology is illustrated by using two examples – a simple column entirely subjected to the fire and a 
part of the building, where the fire scenarios include partial heating of the given floor. Both tests show that a 
critical temperature for both deterministic and stochastic case study belongs to the interval 

 ,500 C 600 C   . It results in exceeding the limit states in the deterministic analysis, while the stochastic 

approach shows big discrepancies in probabilistic characteristics of the critical forces and too small values of 
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the reliability index. The practical engineering importance of this study is emphasized by the fact that the 
existing Eurocodes do not include any guide to the determination of the reliability index in case of stability 
limits as well as in case of fire accidents (and also their protection and prevention).    
 
2. The stochastic perturbation method in stability and reliability analysis  
 
 The random variable b is considered and also its probability density function  p xb . The main 

objective of the stochastic perturbation method is to develop all the input random variables as well as all the 
state functions in a Taylor series about their mean values using the perturbation parameter  . The random 
critical force may be rewritten in the presence of such an uncertainty as Kamiński and Świta [14] 
 

   ε Δ!

nP n0 n cr1P P bcr cr nn bn 1

 
  


 (2.1) 

where  

    ,0b b b     (2.2) 

 
is the first variation of b around its expected value 0b  and  
 

     222 2 0b b b     , (2.3) 

 
is the second order variation of b. The expected value of the critical force can be defined as  
 

          .
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 (2.4) 

 
 This development is true if and only if the series converges and this unconditional convergence is 
guaranteed by an application of the polynomial representation of the critical forces in addition to the given 
input random parameter. All the convergence criteria must include the parameter  , which a priori is 
assumed to be equal to 1 in engineering calculations. Numerical examples presented further in this work 
demonstrate an impact of the expected values, standard deviations and other characteristics of random 
approaches of different orders of the proposed perturbation methodology.  
 From the numerical point of view, the development shown in formula (2.1) is written as an infinite 
sum, however Eq.(2.4) as an integral one is always determined for the real finite limits, where the lower and 
also the upper limit of this integration procedure must have a physical justification and are frequently 
determined in an experimental way. Independently from the particular form of the desired probability 
function, the expected value for a symmetric distribution function can be derived according to the following 
formula 
 

      ,( )!

2n2N P0 2n 2ncr1E P b P b p x dx n Ncr cr b2n 2nn 1 b

              
. (2.5) 

 
 One may expand and integrate the above to get  
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and 
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where   denotes standard deviation of the random parameter b. Generally, the mth central probabilistic 
moment of the critical force is defined as   
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 (2.8) 

 
 This formula renders it possible to derive a perturbation-based relation describing a variance of the 
critical force  bcrP  in terms of the Gaussian random input b. It can be written as  
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 (2.9) 

 
 Given the above assumptions, the variance is derived now according to the twelfth order 
approximation that includes automatically all lower order expansions of the second, fourth, sixth, eighth and 
also the tenth order. For the twelfth order approximation of the variance of the critical force there holds 
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where  cri PD ][  and  crji PD ],[  denote the ith derivatives and also a product of ith and jth derivatives of the 

critical force in addition to the random parameter b. All higher order statistics may be derived additionally by 
using of Eq.(2.8) in conjunction with an expansion provided by Eq.(2.1) and have been developed in the 
tenth order version for other than stability problems in Kamiński [2].  
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 Computational implementation of the symbolic calculus programs combined with the visualization 
of probabilistic output moments ensures most probably the fastest solution of such a problem. Thanks to such 
a series representation of the random output, any desired efficiency of the expected values as well as higher 
probabilistic moments can be achieved by an appropriate choice of the expansion length (and some 
additional correction available in the parameter  ) which generally depends on the input probability density 
function (PDF) type, interrelations between the probabilistic moments, acceptable error of the computations, 
etc. These congruent derivations lead to higher order expansions and equations for third and fourth central 
probabilistic moments necessary for a determination of the skewness and kurtosis of the given output 
variable (Kamiński [2]). Having determined the first two probabilistic moments of the critical force one may 
calculate the reliability index using the limit function g according to the following formula (Cornell [15]) 
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where crP  denotes the additional structural capacity, while Q  stands for the extreme structural response.  
 The probability of survival Pf  is to be found from the following relation:  
 
   fP     (2.12) 

 
where Φ is a probability density function of the standardized Gaussian distribution. Quite naturally, we 
assume that the critical force and the extreme value of the compressive force are statistically independent 
from each other (this second force is usually treated even as a deterministic quantity), so that the cross-
correlation in the denominator of Eq.(2.11) is frequently postponed; additionally, this extreme compressive 
force does not depend upon the fire temperature in our tests. One needs to realize that the value of the 
parameter   is traditionally introduced in all derivations with this perturbation technique as equal to 1 
(Kleiber and Hien [11]).  
 
3. Elastic stability by the combined Stochastic Finite Elements and the Response Function Method  
 
 The purpose to use the tenth order Stochastic Finite Element Method in conjunction with the 
Response Function Method is the necessity to determine higher order partial derivatives of the critical forces 
in addition to the given random input parameter. Lower order versions of the SFEM (Kleiber and Hien [11]) 
were released with the use of hierarchical equations, whose numerical matrix solution led to a 
straightforward determination of the increasing orders perturbation terms contributing to the equations for 
the overall probabilistic moments.   
 The Finite Element Method (FEM) discretization (Bathe [16]; Zienkiewicz and Taylor [17]) is 
connected here with the Response Function Method (RFM) convenient for a further solution of the structural 
stability problem exhibiting uncertainty in parameters related to the temperature. The sequences of the 
deterministic solutions were performed, where the input random parameter value is treated as 
deterministically varying around its mean value – for the brevity of presentation the new index α is used here 
to expose this variability. Then, the global stability equation can be formulated as Kamiński and Świta [18] 
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temperature θ,  ( )
( )

s
 K  is the series of the elastic stiffness matrix determined in the same way, the loading 
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temperature dependent series are denoted here by  ( ) R . When some structural element is subjected to the 

temperature fluctuation   we have to deal with its initial deformation  o T    , where T  is the 

thermal expansion coefficient of steel. Therefore, the loading series can be expressed as  
 
       ( ) ( ) ( )      R P Q  (3.2) 

 
where  ( ) P  is the external load vector and  ( ) Q  is the load applied in the nodes of the element 

resulting from the actual mesh deformation. It is known that the series  ( ) R  have all proportional 

character to    ( ) ( )
ˆ
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so that we obtain the basic algebraic equation series representing the temperature-dependent elastic stability  
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 Therefore, the basic condition that one can get for the critical value at the given temperature 
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ˆ

cr cr      R R  is the following one 

 

        ( ) ( )
( ) ( )( ) ( )

ˆdet ; .s F 0
       K K  (3.5) 

 
 The critical force is represented in simple structural case studies as  
 

       ˆ .P Rcr cr      (3.6) 

 
 According to the basic idea of the Response Function Method we adopt some polynomial 
representations of the critical values  cr 

 
with respect to the input random variable b as  
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n kD bcr kk 0
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 (3.7) 

 

 The coefficients  Dk   are determined numerically from several deterministic solutions to the 

original stability matrix equation with the random parameter value fluctuating about its mean value in the 

interval ,0 0b b b b b        at different temperatures. The nonlinear non-weighted least square fitting 
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technique implemented in the computer algebra system MAPLE is employed for this purpose. The Response 
Function Method involves the following minimization 
 

           min min ,
n kD bkcr ik 0

2 NN 2ei ii 1 i 1
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and  
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 Of course, all partial derivatives inherent in the expression (3.9) with respect to the coefficients Di  

are set to be equal to zero. Finally, the critical values random derivatives are calculated analytically with the 
use of the following recursive formula 
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where the most frequent differentiation with respect to the random temperature looks like  
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4. Computational experiments  
 

4.1. Compression of the simply supported bar under uniform fire heating  
 
 The first analysis concerns the steel beam shown in Fig.1. A model of the column consists of a rod 
with a length of 14.0 m manufactured with the use of the hot-rolled steel profile HEB300. This profile 
belongs to the first class according to the steel structures designing rules, which is equivalent to the 
slenderness larger than its limit value. The static scheme is equivalent to the single straight element 
compressed axially on its both sides. The load in a form of the compressive force 650 kN is applied to the 
supported node and the temperature of the rod is gradually increased. All further calculations have been 
performed using the presented version of the perturbation method and compared with the results obtained 
using the relevant statistical estimators obtained from the Monte-Carlo simulation; statistical estimation is 
carried out by applying of the traditional estimators presented in Bendat and Piersol [19]. Deterministic 
stability analysis has been performed here using the computer program Autodesk Robot Structural Analysis 
2012 based on the Finite Element Method, for a discretization consisting of 999 elastic bar two-noded finite 
elements. Quite naturally, the temperature of this element has been chosen as the Gaussian input random 
variable with the given expectation varying in the temperatures interval given in Tab.1, while its coefficient 
of variation is the next additional parameter into our computational analysis.  
 

 
 

Fig.1. Static scheme of the heated element. 
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 Assuming that the rate of heating of the steel is in the range of 20-50 K/min and using relations 
contained in the engineering design codes, these reduction factors are defined as follows  
 

  , ,f k f yp p  ,     , ,f k fyy y  ,   , ,E k Ea E  . (4.1) 

 
 The coefficients ,k p  , ,k y , ,k E   are each the measures of the relative reduction in mechanical 

properties due to heating by a fire. These reduction factors, the critical values and critical forces are 
summarized in Tab.1.  
 
Tab.1.  Reduction factors for the stress-strain curves of carbon steels at elevated temperatures and the critical 

load value of the first deformation as a function of the temperature. 
 

Steel 
temperature 

Reduction factors at temperature a  relative to the 

value of yf  or aE  at 20 Co  

Random 
elasticity 
modulus 

aE   
 
 
 

The critical 
value for first 
buckling form 

cr  

The 
critical 

force for 
first 

buckling 
form 
 crP   

Reduction factor 
(relative to yf ) 

for effective field 
strength 

Reduction factor 
(relative to yf ) 

for proportional 
limit 

Reduction 
factor (relative 
to aE ) for the 
slope of the 
linear elastic 

range
1 2 3 4 5 6 7 

a  , ,y y yk f f   , ,p p yk f f   , ,E ak E E   
2

N

mm

 
  

 Pcr
cr

P


    kN  

20oC 1.000 1.000 1.000 210000 4.10 2661.62
100oC 1.000 1.000 1.000 210000 4.10 2661.62
200oC 1.000 0.807 0.900 189000 3.69 2395.46
300oC 1.000 0.613 0.800 168000 3.28 2129.30
400oC 1.000 0.420 0.700 147000 2.87 1863.13
500oC 0.780 0.360 0.600 126000 2.46 1596.97
600oC 0.470 0.180 0.310 65100 1.27 825.10
700oC 0.230 0.075 0.130 27300 0.46 300.38

 
 Table 1 documents that the fire entirely heating any structural element decreases the linear elastic 
modulus E a  

in higher temperatures decisively faster than the yield stress. It means that the serviceability 
limit state is more sensitive to a fire accident than the Ultimate Limit State. Therefore, the temperature just 
above Θ=100oC decreases the critical value related to the structural buckling. Reduction in yield strength, 
even though it has a more violent nature, occurs only above Θ=400oC. All the calculations have been 
performed sequentially with temperature increments Θ=100oC with a corresponding reduction in the 
modulus of elasticity according to the values collected in Tab.1. We have carried out stability analysis for the 
temperatures in the interval [20oC, 600oC] as the critical temperature Θ=700oC exceeds the critical force. 
Usage of the Response Function Method to recover the first critical force computed for various temperatures 
demands some polynomial basis. The best fitting is obtained as   
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  . . .

. . .

. . [ ],

15 7 11 6 8 5
cr

6 4 4 3 2 2

P 7 687 10 1 507 10 1 162 10

4 406 10 8 186 10 5 632 10

0 832 2661 620 kN

  

  

           

         
  

 (4.2) 

 
and is presented in Fig.2. The curve in Fig.2 coincides perfectly with the set of discrete points adjacent to 
several deterministic solutions (maximum deviation is -0.00048%). The critical values obviously decrease 
together with an increasing temperature, analogously to the elastic modulus thermal fluctuations. 
 

 
 

Fig.2. The response function  P Pcr cr  . 

 
 In order to obtain the equations depending on a single independent variable, namely the input 
coefficient of variation of random temperature and to have a direct comparison with the Monte-Carlo 
simulation (MCS), further calculations are all based on the perturbation parameter ε=1. A comparison of the 
results obtained by the perturbation stochastic method summarizes the results of the Monte-Carlo simulation 
(MCS) in accordance with the normal distribution of size n=105 trials; program MAPLE has been used as the 
random number generator. The elastic modulus has been initially determined as a function of temperature prior 
to this simulation. The most optimal Least Squares Method approximation for this function can be represented 
as   

  

  . . .

. . .

. [ ].

12 7 8 6 6 5

3 4 1 3 2

E 0 606 10 0 119 10 0 917 10

0 348 10 0 646 10 4 443

65 670 210000 MPa

  

 

           

        
  

 (4.3) 

 
 Probabilistic convergence tests have been provided for the very wide range of the input coefficient of 
variation, e.g.  [0.00; 0.40]. A remarkable similarity of the variances of the critical force was obtained 
for  [0.00; 0.20] for the temperatures Θ=100oC and Θ=200oC and (Figs 3 and 4) and the twelfth order of 
stochastic perturbation-based results is the closest to the estimators coming from the MCS in the given 
temperatures range. As it could be expected, the variances of the critical force at both temperatures 
dominantly increase together with an increase of the input coefficient of variation and the resulting functions 
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are convex and generally rather close to a series of the discrete values obtained via computer simulation. 
This is may be not the case of lower order stochastic perturbation methods (especially of the second order), 
whose results should be treated as not efficient for larger input uncertainty. This observation affects also the 
reliability analysis and that is why the tenth order is preferred.  
 

       
 

Fig.3. Variance  
cr

PVar , a comparison of the              Fig.4. Variance  
cr

PVar , a comparison of the 

         perturbation method and MCS,  E Θ =100oC.               perturbation method and MCS,  E Θ =200oC. 
 

   
 

Fig.5. Variance  crPVar , a comparison of the              Fig.6. Variance  
cr

PVar , a comparison of the 

        perturbation method and MCS,  E Θ =400oC.                perturbation method and MCS,  E Θ =500oC. 

 As it is documented by the results obtained for each temperature, the highest accuracy in-between 
statistical estimators of the Monte-Carlo Simulation (MCS) and the stochastic perturbation technique is 
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obtained for its twelfth order implementation. A distribution of various orders of the stochastic perturbation 
technique is the most regular for extreme temperature Θ=500oC. It is observed that the higher the order of the 
stochastic perturbation method at a specific range of the coefficient of variation, the smaller the difference in-
between neighboring orders results (Fig.6). Further, an important observation concerns the distribution of the 
resulting critical force in the context of computed coefficient of skewness, and also the third central 
probabilistic moment. As we know, this parameter is equal to zero for the Gaussian probability distribution 
function (and for all the symmetric distributions also). Starting from the results presented in Figs 7 and 8, where 
skewness determined via both the stochastic perturbation method and MCS approach differs from zero we need 
to conclude that the given input Gaussian random variable does not induce the Gaussian critical force; it 
remains true for Θ≥100 oC. This conclusion is entirely confirmed by the analysis of kurtosis (Figs 9-10) also 
different from zero – generally positive for most of the perturbation methods results and sometimes even 
negative.  
 An increase of the temperature and an increase in the coefficient of variation result in the divergent 
values of the skewness and kurtosis in-between successive perturbation order approaches, which is 
particularly apparent for the temperature Θ=500oC and for α>0.06 (Figs 8 and 10). A comparison of the 
results obtained for the stochastic perturbation methods and for the Monte-Carlo simulation reveals a good 
coincidence of both methods. It is interesting that a better coincidence in-between these methods is obtained 
for a higher temperature, while Θ=100oC results in significantly more distant results. In order to obtain a 
better convergence of these two methods it is recommended first to increase the total number of the MCS 
random trials (to more than a million).  
 

  
 

Fig.7. Skewness  P1 cr , a comparison of the              Fig.8. Skewness  P1 cr , a comparison of the 

          perturbation method and MCS,  E Θ =100oC.              perturbation method and MCS,  E Θ =500oC. 
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Fig.9. Kurtosis  Pcr , a comparison of the                  Fig.10. Kurtosis  Pcr , a comparison of the 

        perturbation method and MCS,  E Θ =100oC.                perturbation method and MCS,  E Θ =500oC. 

 

    
 
Fig.11. Expected value  

cr
PE , a comparison of          Fig.12. Expected value  

cr
PE , a comparison of 

       the perturbation method and MCS,  E Θ =100oC.      the perturbation method and MCS,  E Θ =500oC. 
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Fig.13. Standard deviation  Pcr , a comparison         Fig.14. Standard deviation  Pcr , a comparison 

          of the perturbation method and MCS,                        of the perturbation method and MCS,  

          ΘE =100oC.                                                              E Θ =500oC. 

 
 Analyzing the probabilistic convergence of the particular moments of the critical force we 
conclude quite obviously that the best efficiency is obtained for the expectations, where even the sixth-
order perturbation technique coincide very well with the MCS estimation. Let us note that the difference 
of the expected value obtained by the stochastic perturbation method and, separately, with the use of MCS 
is generally less than 0.001%, so that can be postponed at all. This coincidence in-between the MCS and 
the SPM is a little bit weaker for the standard deviation, nevertheless is quite satisfactory. Interestingly, 
the output standard deviation of the critical force is almost linearly dependent upon the input uncertainty 

α(T) for E Θ   =100oC, and it nonlinearly increases while  ΘE =500oC, especially above α(T)>0.10. The 

differences between the results obtained for the stochastic perturbation method of various orders are 
decisively smaller for a lower temperature here (cf. Fig.13). Figures 11-14 document consecutively that 
the twelfth order perturbation technique is really very efficient in determining the expectations and 
standard deviations despite of the value of α(T). This conclusion is of the practical importance as these 
moments influence the reliability index only and its value fluctuations depending upon the element 
temperature, probabilistic numerical technique and also upon the input coefficient of variation have been 
collected in Tabs 2-3 below. Additionally, one may find numerical values of the expectations and 
variances resulting in this index for lower and higher temperatures.    
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Tab.2.  Comparison of reliability index by MCS and by the Stochastic Perturbation Method, 

E Θ o100 C   
.  

 
MONTE-CARLO SIMULATION           

for n=105 
  

 STOCHASTIC PERTURBATION METHOD 

   
cr

PVar   crPE       
cr

PVar  crPE    

0.02 8.58 2661.54 686.63  0.02 8.59 2661.54 686.46 

0.04 34.39 2661.30 342.98  0.04 34.49 2661.30 342.50 

0.06 77.60 2660.90 228.28  0.06 78.11 2660.90 227.53 

0.08 138.51 2660.35 170.82  0.08 140.14 2660.34 169.82 

0.10 217.51 2659.63 136.26  0.10 221.50 2659.62 135.03 

0.12 315.12 2658.77 113.16  0.12 447.02 2658.76 111.71 

0.14 431.89 2657.75 96.61  0.14 594.04 2657.74 94.96 

0.16 568.47 2656.60 84.16  0.16 568.47 2656.58 82.33 

0.18 725.52 2655.30 74.45  0.18 765.99 2655.28 72.45 

0.20 903.70 2653.87 66.66  0.20 964.52 2653.85 64.52 
 

Tab.3.  Comparison of reliability index by MCS and by the Stochastic Perturbation Method, 

E Θ o500 C   
. 

 
MONTE-CARLO SIMULATION           

for n=105 
 
 

STOCHASTIC PERTURBATION METHOD 

   
cr

PVar   crPE        
cr

PVar   crPE  

0.02 654.17 1596.29 37.00 0.02 654.46 1596.27 36.99 

0.04 3088.89 1593.57 16.98 0.04 3098.20 1593.53 16.95 

0.06 9617.30 1586.82 9.55 0.06 9660.76 1586.75 9.53 

0.08 29123.45 1572.48 5.41 0.08 28981.47 1572.37 5.42 

0.10 94188.42 1545.14 2.92 0.10 90982.87 1544.98 2.97 

0.12 314119.60 1497.06 1.51 0.12 289107.90 1496.83 1.58 

0.14 1020171.00 1417.60 0.76 0.14 884156.20 1417.32 0.82 

0.16 3125287.00 1292.49 0.36 0.16 2532523.00 1292.22 0.40 

0.18 8944484.00 1103.02 0.15 0.18 6744108.00 1102.88 0.17 

0.20 23940695.00 825.04 0.04 0.20 16734729.00 825.29 0.04 
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 The first very important observation is that the reliability index obtained for a minimum value of 

α(T)=0.02 and smaller  ΘE =100oC is about twenty times larger than that close to the critical 

temperature, for  ΘE =500oC. The first two probabilistic moments computed with the use of both 
numerical techniques are perfectly the same in pairs – for smaller and larger temperatures, separately. It 
means that stability analysis with temperature uncertainty for small scale engineering structures may be 
carried out with the use of the stochastic perturbation method without any computational discrepancy. 
Interestingly, that expected value of the critical force decreases by about 60% for the considered fire 
temperature fluctuation, but the variance increases by almost eighty times. Further, smaller temperature is 

accompanied by uncertainty-independent critical force expectation, while for  ΘE =500oC this 
expectation decreases two times over the entire random scale. The variances increase definitely faster 
(the only contribution to the reliability index denominator) – a hundred times at the initial temperature 
and almost 104 times for a higher temperature. It results in the fact that the final value of the reliability 
index decreases here in a typical exponential manner (ten times for a lower temperature throughout the 
entire variability range of α(T)). Higher temperature tests exhibit a critical state of this element shortly 
above α(T)=0.08, which is a relatively small uncertainty level concerning the fire temperature nature. 
Even in this limit case statistical and non-statistical methods give the same results, which is rather far 
beyond initial expectations.  
 
4.2. Six nave frame building under non-uniform fire   
 
 The second example concerns probabilistic characteristics of a building structure subjected to high 
temperature caused by a fire also in the context of the global stability of the complex bar structure. The 
subject of our analysis is a six nave steel frame consisting of 639 bars made of the hot rolled steel profiles 
(Fig.15) classified as the first class sections. All the columns are made of the steel hot-rolled wide flange 
profiles HEB 320. The floor beams are made of the very similar profiles HEB 400, whereas the transverse 
beams (stiffening) were designed as HEB 260. All connections between the beams have been established 
for the brevity of presentation and discussion as perfectly rigid (according to the engineering designing 
codes their stiffness depends on the inter-connected elements actual temperature). Each rod has been 
subdivided here into a minimum of 32 two-noded finite elements, which gives a total of 20449 beam finite 

elements and 20118 nodes; three-storey columns are completely fixed in their foundations ,u 0x   

,u 0z   u 0y  . The freedom of a deformation of the entire structure has been disabled along the axis y  

 u 0y  , which is perpendicular to the main plane of this frame (cf. Fig.15). This structure is uploaded 

with its dead load (No.1), static load - roof, walls and floors load (No.2) and fire temperature (No.3). In 
addition, a uniform constant live load is applied to the beams of each floor (No.4), static equivalent of the 
wind pressure (No.5) and finally snow (No.6). The global buckling coefficient has been further determined 
for the dominating load combination in the form of (No.1 + No.2) 1.35 + (No.3) 1.10 + (No.4) 1.05 + 
(No.5) 0.90 + (No.6) 0.75. 
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Fig.15. Static scheme of the building. 
 
 A reduction of the elasticity modulus and yield strength in higher temperatures has been made 
according to the experimental data included in Tab.4. The additional internal forces caused by heating the 

structure in the temperature range belonging to Θo o20 C 750 C   are included as proposed in the 
engineering design codes as the relative thermal expansion of steel defined as  
 

  . . .
l 5 8 2 41 2 10 0 4 10 2 416 10

l

          . (4.4) 

 

 Considering the fact that the critical temperature has been initially calculated from the engineering 
code in a deterministic way as a little bit smaller than Θ=700oC, then the temperature range for probabilistic 
computations has been set as [0°C; 680°C]. All the reduction factors necessary for materially non-linear 
analysis are inserted in Tab.4. It is seen that the largest decrease of the critical force is obtained in the range 
500-600°C, where the first critical force reduces by almost 65%, similar decisive decreases are obtained for 
all material parameters contained in this table.  
 Successively, the building is divided into fire zones (four zones dividing the building into four sectors), 
while at the same time the structure has been subjected to a combination of loads and uniform utilization of 
temperature, applied to one zone in accordance with Fig.16. These zones are thermally separated, and the 
structural members subjected to a higher temperature are not thermally insulated. The ceilings between the 
floors do not separate any fire, so that all structural elements of the given fire zone have been uniformly heated 
by the temperature Θ . Deterministic and probabilistic computations of the critical load for this structure model 
have been performed by means of the geometrically nonlinear analysis by using the Newton-Raphson 
algorithm. The computer FEM analysis has been performed using the Autodesk Robot Structural Analysis 2012 
program, where a number of critical forces have been determined as a function of the fire temperature. All these 
calculations have been carried out for the temperatures listed in Tab.4 including a corresponding reduction in 
the elastic modulus. The discrete sets of critical forces have been replaced for the needs of any order stochastic 
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perturbation method into some polynomial function of the input temperature by the Least Squares Method. The 
first and second deformed configurations are contrasted for the corresponding critical loads in Figs 17-18 
below. The main difference between them is that the first form of buckling deformation is almost the same for 
all the columns (pure bending mode), while the other strongly depends upon the position of a given column 
inside this building (combined bending-twisting mode).  
 
Tab.4.  Reduction factors for the stress-strain curves for carbon steels at the elevated temperatures and the 

critical load value of the first deformation as a function of temperature.  
 

Steel 
Temperature 

Reduction factors at temperature a  relative to the 

value of yf  or aE  at 20 Co  

Random 
modulus 

of 
elasticity 

aE  
 

The critical 
value for first 
buckling form  

cr  

The 
critical 

force for 
first 

buckling 
form      
 crP 

Reduction 
factor for the 
effective field 

strength 

Reduction 
factor for the 

proportionality 
limit 

Reduction 
factor for a 
slope of the 
linear elastic 

range 

1 2 3 4 5 6 7 

a  

  

 







2mm

N  P Θcr
cr

P
   

 
 kN  

20oC 1.000 1.000 1.000 210000 3.765 4782.47
100oC 1.000 1.000 1.000 210000 3.765 4731.50
200oC 1.000 0.807 0.900 189000 3.685 4580.94
300oC 1.000 0.613 0.800 168000 3.592 4427.26
400oC 1.000 0.420 0.700 147000 3.483 4256.24
500oC 0.780 0.360 0.600 126000 3.361 4094.93
600oC 0.470 0.180 0.310 65100 2.201 2720.57
650oC 0.350 0.128 0.220 46200 2.122 2619.16
680oC 0.278 0.096 0.166 34860 1.269 1581.92
700oC 0.230 0.075 0.130 27300 0.974 1124.85

 

 
 

Fig.16. Diagram of temperature load equivalent to the fire accident (No.3). 

yyy ffk /,,  ypp ffk /,,  EEk aE /,, 
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         Fig.17. Structure deformation equivalent               Fig.18. Structure deformation equivalent 

               to the first critical load,  E o680 C  .                      to the second critical load,  E o680 C  . 

 
 Preliminary results of these computations are contained in Figs 19-20 and these are the compressive 
force in the most loaded column as well as the first critical force – both as a function of the mean fire 
temperature. These graphs contain discrete values obtained in the FEM experiments together with their 
continuous polynomial approximations returned by the LSM. It is very interesting that these two forces 
exhibit completely different temperature variations. They decrease at the same time in the range [0°C, 
500°C] in a very regular and monotonous way and then a compressive force starts to suddenly increase, 
while the critical one rapidly decreases together with an additional temperature increase. These reversed 
tendencies in Preal and Pcr lead to the most decisive decrease of the reliability index given further in Tab.5.   
 

         
     Fig.19. The response function  P Preal real  .       Fig.20. The response function  P Pcr cr  .  
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 Further, these polynomial functions have been processed in the computer algebra system MAPLE to 
obtain the first four probabilistic characteristics of the critical force as a function of the random input 
coefficient of variation. So that the expected values (Fig.21), the variances (Fig.22), skewness (Fig.23) and 
kurtosis (Fig.25) are computed at the temperature Θ=100oC by the use of the even order stochastic 
perturbation theories from the second up to the twelfth one. Additionally, we attach the skewness (Fig.24) 
and kurtosis (Fig.25) for a higher temperature, i.e. Θ=500oC to detect its influence on the probabilistic 
convergence of this method. Generally, it is seen that all the aforementioned characteristics obtained 
according to higher order stochastic perturbation techniques exhibit very similar results within these orders, 
while lower order techniques like the second and the fourth one should be completely disregarded. 
Interestingly, this remains true at Θ=100oC for the enormously wide range on the input uncertainty 

 . , .0 0 0 20 . 

 The expected values despite of the particular perturbation order slightly decrease together with the 
input coefficient α (Fig.21), the variances increase in the same context also in a monotonous way (Fig.22). 
Further, we notice that skewness decreases through the negative values starting from initial 0 corresponding 
to a deterministic situation (Figs 23-24), whereas kurtosis increases being positive everywhere (Figs 25-26). 
Higher order characteristics exhibit the same general tendencies in lower and higher temperatures but their 
final fluctuations are more rapid. Very typically for the stochastic perturbation techniques, probabilistic 
characteristics computed according to different order theories diverge for an increasing value of the 
parameter α; sometimes rapid fluctuations of these statistics make this effect invisible (like in Figs 24-26). 
Finally, one needs to notice that both skewness and kurtosis differ from 0 elsewhere except a trivial 
deterministic case α=0, which means the Gaussian temperature of the fire induces apparently non-Gaussian 
response in the context of the critical force. Therefore, the Cornel FORM reliability index has rather a 
limited significance and should be further replaced with the theory including non-symmetric and leptokurtic 
distributions of the stability limit state. It was the reason to study in detail the first two probabilistic moments 
inserted in this index at different temperatures corresponding to the heating by fire.  
 

  
 

       Fig.21. Expected value  
cr

PE ,  E Θ =100oC.               Fig.22. Variance  
cr

PVar ,  E Θ =100oC.  
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    Fig.23. Skewness  P1 cr , a comparison of the       Fig.24. Skewness  P1 cr , a comparison of the 

          perturbation method and MCS,  E Θ =100oC.              perturbation method and MCS,  E Θ =500oC. 

 

  
     

      Fig.25. Kurtosis  Pcr , a comparison of the         Fig.26. Kurtosis  Pcr , a comparison of the 

          perturbation method and MCS,  E Θ =100oC.              perturbation method and MCS,  E Θ =500oC. 

 
 We collect for this purpose in pairs the expectations (Figs 27, 29, 31 and 33) and standard deviations 
(Figs 28, 30, 32 and 34) for the temperatures 300oC, 500oC, 600oC and 680oC. A verification range of the 
input coefficient of variation has been decreased together with an increase of the fire temperature – from 
α=0.25 at Θ=300oC down to even α=0.10 at the highest one Θ=680oC. The fundamental reason is an 



Probabilistic buckling analysis of the beam steel …  505 

apparent divergence of even the first two probabilistic moments computed for various perturbation orders. 
Reliable results are obtained right now with the use of the eight, tenth and twelfth Taylor expansion orders 
only. The input uncertainty has an increasing influence on these moments – the expected values for Θ=300oC 
are almost insensitive (as far as the vertical axis range in Fig.27 is taken into account). They are more 
sensitive for Θ=500oC (Fig.29) and suddenly after reaching Θ=600oC may reach 0 (for α=0.11 at Θ=600oC 
and for α0.03 at θ=680oC). Therefore, the stochastic method presented can detect the stability limit of the 
given structure in a presence of the Gaussian uncertainty in the fire temperature.  
 

  
   Fig.27. Expected value  

cr
PE ,  E Θ =300oC.      Fig.28. Standard deviation  Pcr ,  E Θ =300oC. 

 

   
   Fig.29. Expected value  

cr
PE ,  E Θ =500oC.       Fig.30. Standard deviation  Pcr ,  E Θ =500oC.  
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      Fig.31. Expected value  
cr

PE ,  E Θ =600oC.     Fig.32. Standard deviation  Pcr ,  E Θ =600oC. 

 

   
 

     Fig.33. Expected value  
cr

PE ,  E Θ =680oC.      Fig.34. Standard deviation  Pcr ,  E Θ =680oC.  

 
 The negative expectations are of course completely disregarded since the physical interpretation of 
the sign change in the stability analysis. Standard deviations given in Figs 28, 30, 32 and 34 undergo even 
more dramatic fluctuations together with a fire temperature. They start from almost linear dependence upon 
the input coefficient α at Θ=300oC (the same as before at Θ=100oC), then become highly nonlinear at 
Θ=500oC for .0 10   to decrease to 0 for .0 12  , which disqualifies the resulting reliability index for all 
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.0 12  . Above this temperature, see Figs 32 and 34 they still increase together with this parameter α but 
their extreme values are comparable to the corresponding expectation (at Θ=600oC) and even with a few 
times larger when compared to the corresponding expectation for Θ=680oC. All these observations and 
consequences look quite unusual when compared with many previous applications of the generalized higher 
order stochastic perturbation technique and its implementation as the SFEM.    
 Starting from probabilistic characteristics collected above (expected values, variances, kurtosis and 
skewness) one may analyze the reliability of the structure similarly to the first numerical example. The 
reliability index calculated according to the FORM approach has been presented in Tab.5. Analogously to 
the case studies with material uncertainty with no reduction of the additional parameters mean values with 
the temperature (Kamiński [2]) it is seen that as the variance of the critical force decreases together with an 
increase of the temperature, the FORM reliability index decreases. The expected values of this critical force 
magnitude decrease while increasing the input coefficient of variation, nevertheless an influence of the 
second order moment is decisive in this particular case. Generally, this observation reflects an engineering 
observation that steel structures lose their strength together with progressing fire exposure. Fire heating of 
this building must result in a failure and this is noticed at Θ=600oC when this index reaches 0. Summarizing, 
it should be emphasized that an important advantage of the method is the ability to analyze individual 
probabilistic characteristics as a function of the coefficient of variation, which offers undoubtedly the very 
significant acceleration of structural computations when compared to the traditional alternative - the Monte-
Carlo simulation. One needs to notice that the output probability distribution is not strictly Gaussian, 
therefore an application of the Cornell theory is not very exact and should be replaced with a formula taking 
into account higher order statistics also.  
 

Tab.5. Reliability index by the SFEM for E Θ o500 C   
and E Θ o600 C   

. 

 
 

E Θ o500 C   
 E Θ o600 C   

 

   crPE   crPvar     crPE   crPvar    

0.02 4084.40 7101.69 34.01 2745.63 11244.554 14.24 
0.04 4054.63 32094.45 15.83 2802.00 56051.525 6.62 
0.06 4010.78 80344.49 9.85 2814.97 359163.164 2.64 
0.08 3960.16 153867.92 6.98 2595.96 5101506.682 0.60 
0.10 3909.07 296257.70 4.94 1733.46 49240800.711 0.07 

 
5. Concluding remarks  
 
 The numerical analysis carried out in this work shows with no doubt that the steel structures are 
highly sensitive to high temperatures during fire accidents not only in the deterministic analysis but also in 
the stochastic context. The computational analysis provided in this paper shows that stochastic linearized 
buckling modeled with the help of the stochastic perturbation-based Finite Element Method program may be 
relatively easily implemented with interoperability of the computer algebra program and some classical 
Finite Element Method system. It is demonstrated here that a validity range of the tenth order stochastic 
perturbation method implemented as the SFEM and applied to determine the reliability index by the FORM 
highly depends on the input temperature of the element – for Θ≤600oC input uncertainty  . , .0 00 0 10  

gives very accurate results, while Θ≥600oC  admits  . , .0 00 0 05  only. Further, it is seen that the proposed 

Response Function Method yields quite reliable analytical approximations of the explicit interrelations in-
between material structural design parameters and both discrete state parameters like displacements as well 
as global state functions like the critical load. It should be emphasized that the stochastic perturbation 
method is the first reliable method allowing a non-statistical determination of higher order probabilistic 
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moments and the resulting probability distribution. It is possible in particular to determine central moments 
of the higher order, kurtosis and skewness for the resulting critical load as the additional functions of the 
structural element mean temperature. Numerical analyses show here that a sufficiently good approximation 
is to engage the tenth order perturbation method, whose value usually is only slightly different from the next, 
twelfth consecutive perturbations. Noteworthy is the fact that the results obtained in the form of the 
reliability index can be directly expressed as a function of the input parameter uncertainty level, so that one 
can calculate even probabilistic entropy fluctuations. It remains evident after this study that the values of the 
reliability index concerning both Ultimate and Serviceability Limit States included into Eurocode design 
rules cannot be directly applied to the fire situation, where they should have significantly larger limit values. 
The stochastic perturbation method adopted for the analysis of buckling phenomena gives much larger 
capabilities for modeling reliability than other numerical methods. Reliability assessment using the higher 
order stochastic perturbation method related to stability of the selected steel structures has proven that quite 
good efficiency has been obtained using the method decisively less time-consuming than the Monte-Carlo 
simulation. 
 
Nomenclature 
 
 b – input Gaussian random parameter 
 b0 – mean value of the input Gaussian random parameter 
  Dk   – temperature-dependent coefficients of polynomial expansion of the critical force with respect to 

random input b 
  [ ]i crD P  – ith partial derivative of the critical force with respect to random b 

  [ , ]i j crD P  – a product of ith and jth partial derivatives of the critical force with respect to random b 

 E(θ) – temperature-dependent Young modulus of the steel 
 E[b] – expected value of the parameter b 
  ie   – temperature-dependent residuals in the Least Squares Method approximation 

 fp – proportionality limit of the steel 
 fy – plastic limit of the steel 
 g – limit function 

  ( )
( )( )
ˆ ;F
 K  – temperature-dependent geometric stiffness matrix 

  ( )
( )

s
 K  – temperature-dependent stiffness matrix 

  k E   – temperature-dependent for the Young modulus of the steel 

  kp   – temperature-dependent reduction factor of the proportionality limit for the steel 

  k y   – temperature-dependent reduction factor for the plastic limit of the steel 

 M – total number of discrete points in the Least Squares Method approximation 
 m – an order of polynomial representation for the critical load versus random input variable b 
 N – total number of random trials for Monte-Carlo simulations 
 n – random Taylor expansion order 
 Pcr – critical force 
 Pf – probability of survival of the given structure 
  ( ) P  – deformation-independent component of the external load vector 

  p xb  – probability density function of the parameter b 

  ( ) Q  – deformation-dependent component of the external load vector 

  ( ) R  – temperature-dependent external load vector 

  ( ) r  – temperature-dependent structural displacement vector 

 Var(b) – variance of the parameter b 
 
 



Probabilistic buckling analysis of the beam steel …  509 

 
  ( ) v  – temperature-dependent critical deformation of the structure 

  b  – coefficient of variation of random parameter b 

 T  – coefficient of thermal expansion of the steel 

   – reliability index 
  1 b  – skewness of random parameter b 

 b  – variation of the parameter b about its mean value b0 
   – temperature fluctuation of the given structural element 
   – perturbation parameter 
 Φ – probability density function of the standardized Gaussian distribution 
  b  – kurtosis of random parameter b 

  cr   – temperature-dependent critical load multiplier 

  bk  – kth central probabilistic moment of random variable b 

  , Θ – given and structural element temperatures 
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