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In this paper, the influence of heat transfer on the peristaltic flow of a conducting Phan-Thien-Tanner fluid in
an asymmetric channel with porous medium is studied. The coupled nonlinear governing differential equations
are solved by a perturbation technique. The expressions for the temperature field, the stream function, the axial
velocity, and the pressure gradient are obtained. The effects of the various physical parameters such as the
magnetic parameter M, the permeability parameter G, the Brinkman number Br and the Weissenberg number We
on the pumping phenomenon are analyzed through graphs and the results are discussed in detail. It is observed
that the velocity and the pressure are decreased with increasing the magnetic parameter M whereas the effect of
the parameter M on the temperature field is quite the opposite.
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1. Introduction

Peristaltic transport is a natural mechanism of pumping induced by a progressive wave of area
contraction or expansion along the length of the boundary of a fluid-filled distensible tube. This principle
occurs in many biological and biomedical systems such as the transport of urine from kidney to the
bladder, transport of spermatozoa in the ductus efferentes of the male reproductive tract, transport of
lymph in the lymphatic vessels, the movement of chyme in the gastrointestinal tract movement of the
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ovum in the female fallopian tube, vasomotion of small blood vessels such as arterioles, venues and
capillaries, and so on. Also this mechanism finds applications in blood pumps, heart-lung machines,
dialysis machines, roller and finger pumps, and also noxious fluid transport in nuclear industries. The
peristaltic flow of non-Newtonian fluids has gained considerable interest during recent years because of its
applications in industry and biology. Some of the studies on the peristaltic flow of non-Newtonian fluids
can be seen in references (Misra and Pandey [1], Usha and Rao [2]; Mishra and Rao [3]; Hayat et al. [4];
Noreen and Nadeem [5]; Vajravelu et al. [6]).

Flows through a porous medium occur in filtration of fluids and seepage of water under a dam.
Consideration of porosity is very necessary to properly explain the fluid dynamical process that occurs in
different parts of a living body, such as vascular systems, lungs, kidneys, and blood vessels. The peristaltic
transport and heat transfer related to the flow of blood and some other fluids through porous media has been
discussed by different researchers. Vajravelu et al. [7] analyzed the peristaltic flow and heat transfer in a
vertical porous annulus with long wavelength approximation. Srinivas and Gayathri [8] studied the peristaltic
transport of a Newtonian fluid in a vertical asymmetric channel with heat transfer and a porous medium.
Vajravelu et al. [9] discussed the influence of heat transfer on the peristaltic transport of a Jeffrey fluid in a
vertical porous stratum. Sreenadh et al. [10] investigated the peristaltic transport of micropolar fluid in an
asymmetric channel with permeable walls. The peristaltic transport of a conducting Jeffrey fluid in an
inclined asymmetric channel was studied by Vajravelu et al. [11].

Magnetohydrodynamics describes the dynamics of electrically conducting fluids. The mutual
interaction between the fluid motion and magnetic field is the essential feature of the physical situation in the
MHD fluid flow problems. MHD principles are useful in the design of heat exchangers, pumps, radar
systems, power generation development of magnetic devices, cancer tumor treatment, hyperthermia, and
blood reduction during surgeries. It is realized that the principles of magneto hydrodynamics find extensive
applications in bioengineering and medical sciences. Hence several scientists analyzed the peristalsis with
magnetic field effects (Mekheimer [12]; Hayat and Ali [13]; Kothandapani and Srinivas [14]; Noreen et al.
[15]).

Most of the biofluids in nature are now accepted to behave like non-Newtonian fluids. The complex
behavior of chyme in the small intestine is modeled through a Phan-Thien-Tanner (PTT) fluid model by
Hakeem and Naby [16] and a good agreement is found between theoretical and experimental results.
Motivated by the above studies, the peristaltic transport of conducting Phan-Thien-Tanner fluid in an
asymmetric channel with a porous medium is investigated. The governing equations of the PTT model have
been simplified and are solved by a perturbation technique. The expressions for the stream function, the
temperature, the pressure gradient, and the pressure rise have been obtained. The effects of various
parameters on the velocity, the temperature, the pressure rise, and the trapping phenomenon are discussed
through graphs.

2. Mathematical formulation

We consider an incompressible Phan-Thien-Tanner fluid in an asymmetric channel with a porous
medium of width d, +d,. Let ¢ be the speed by which sinusoidal wave trains propagate along the channel

walls. Consider the rectangular coordinate system ()_(, 1_’) where the X — axis and Y — axis are taken

parallel and transverse to the direction of wave propagation, respectively. The wall surfaces are modeled as
H;, i=1,2 (H, is the upper wall and H, is the lower wall)

}_’=H1 =d, +a1cos{2—;()_(—c2)} , }_’=H2 =—d, —bjcos[%()_(—cf)ﬂb} (2.1)
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where ¢ is the phase difference varying in the range 0 < ¢ <, $ =0 corresponds to the symmetric

channel with waves out of phase and ¢ =n with waves in phase. Also, a;,b;,d;,d, and ¢ satisfy the

condition a 12 +b 12 +2a;bycosd<(d, +d,) ? o that walls will not intersect each other.

The governing equations of the model are as follows:
Continuity equation

VV =0. 2.2)
Momentum equation

dv
——=divT. 2.3
P v (2.3)

The constitutive equations for the PTT model

T=—pI +s, (2.4)
\%
f(tr(s))s+ks=2uD, (2.5)
v
s = s _ s.L' —L.s, (2.6)
dt
L=gradV; 2.7

asterisk denotes transposition.
The function f'in the linearized PTT model satisfies the expression

f(tr(s)) =1+ %tr(s). (2.8)
n

Note that the PTT model reduces to an upper convected Maxwell (UCM) model when the
extensional parameter € is zero.
We introduce the following transformations between the fixed and the wave frames

x=X-ct, y=Y, u=U-c, v=V, p(x)=P(X,1). (2.9)
Using Eq.(2.9), the governing equations in the wave frame can be written as

ou ov
—_—t—=

=+—==0, 2.10
ox Oy (10

ol #l vl [=_%p, OB Oy _ﬁ(&+c)—06302(&+c), @.11)
ox Oy ox ox 0y Kk
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e =

- A — 2.12
ox Oy dy ox oy k'’ (2.12)
— -8z -0Sx .ou—_ _Gu—_|- . ou
Satklu——+v—-2—=8x-2—=Sy [v=2u— 213
/ ox Oy Ox Oy Xy} uﬁx’ (213)
— [-88y -0Sw _ov—_ _ov—=_|- . ov
So+k|u—2 v 28§ —2-=83, [v=2u—=, 5 14
/ ox oy ox . oy W} M@y @19
f§;+%:&a§%+ia§? =0, (2.15)
| Ox oy
- -0Sy -80Sy Ov—_ Ov—_ Ou—_ Ou-— ou v
IS { Ox oy Ox Oy Yo oy W} H{@y 6xJ’ (2-16)
f =I+%(§Q +§ﬁ +§Z), (2.17)

1

~ ~ 2 2 —\? —\’ P
pc, (u+c)£_+vi— T=k, %+8T2 T+2n a—g + G_X +uU 8_Z+6_\_/ -(2.18)
ox Oy ox oy ox oy 0y Ox

The non-dimensional quantities and the expressions for stream functions are given by

- - - - ,— -
L S L A . R Y
d, A d; c dc A pek A
S;d
R PCd1’ d—ﬁ, zﬂ’ bzb_I’ S, = Y ], h1=i=]+acos(2nx),
u d d d pe d
(2.19)
H 2 6302d12 d
hy=—2%=-d-bcos(2mx+ )M~ =—"—L o=—L,
d, M \/E
_ c 2
G:T TO, Pr=M Ly Ec=—~ and uza—w, v=—@.
T, -T, ky ¢, (T, -1p) oy ox

Using the above non-dimensional quantities and the long wave length approximation, the basic
equations reduces to
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d_pzany _(62+M2)(5_\v+1j’

dx Oy oy
»_,
y
82\|1
[ S =2We—S,,

fSyyzoa fSZZZOa

2 2
1S, =—Weaay—\2VSW +aay—‘;’,
2 2
0= 100 plov)
Pr gy oy

The corresponding non-dimensional boundary conditions are

F oy
=—, —/—=-] at y=h,.
v P gy y=n
F oy
=——, —=-1 at y=h,,
v 5 Py y=mn

0=0 at y=h,

0=1 at y:h2

where F is the mean flow rate in the wave frame.
The flux at any axial station in the fixed frame is

hy
0= j(u+1)dy=h]—h2+F.
h

The average volume flow rate over one period of the peristaltic wave is defined as

It 1t
®:?£th:?£(}1} —hy+F)dt=F+1+d.

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

2.27)

(2.28)
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From Eq.(2.23) we have § ,, = 0, S, = 0 and from Eq.(2.20) we get

_ dp 2 2
Sxy—yE-l—(G M )(\|/+y). (2.28)

With the help of Egs (2.23) and (2.24) we can write
2
Sy =2 WeS,,,. (2.29)
From Egs (2.17), (2.23) and (2.29) we obtain

82\|/
8y2

=5, +2eWe’S]. (2.30)

Substituting Eq.(2.28) into Eq.(2.30), we get

Py dp 2 2f . dp (2 2 ’
6y—2:y;+(c +M )(\y+y)+28We yEJr(G +M )(\p+y) . (2.31)

3. Perturbation solution

Equation (2.31) is non-linear, its exact solution is not possible, and hence we employ the
perturbation technique to find the solution. For the perturbation solution, we expand the flow quantities in

powers of the small parameter We? as follows

Y=y, +Wez\|/1 + O(We"),
F = Fy+We’F + O We'),
¢=¢0+We2¢]+0(We4), (3.1)

d—pzﬂ+We2@+o(We"),
dx dx dx

0=0,+We’0, + O We* .

Using the above expressions in Egs (2.25) - (2.31), we obtain a system of equations of different
orders.

3.1. System of order we’

The governing equations and boundary conditions of the zeroth-order are
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aZ\If dp 2 2
6y20=y dx(’+(6 + M) (v + p),

2 2
SN

~ Pr ayz o0y
F oy,
=—, —==-] at =h,,
Yo 5 oy y=n
£y Wy
=——", —~=—] at =h,,
Yo 5 oy y=m

The solution of the zeroth-order problem is given by

Yy =clcosh\/csz +M2y+czsinh o’ +M2y—y

Hence, the axial velocity and the temperature for the zeroth-order are

uy =No’ +M? (c] sinhvo? + M? y + ¢, cosh/c? +M2y)

2 [
90=—(02+M2) Br(a,coshZ\/02+M2y+6125inh2 52+M2y+03)/2)+

+A4; y+ 4,.

3.2. System of order We’

The governing equations and boundary conditions of the first-order are

o’y dp 2 a2 dp 2, ag2 ?
—Izy—1+(6 +M )w,+22{yd—0+(c +M )(\p0+y)j ,
X

ayz dx

0°0, +2E052W0 o’y

oo L

b

(c52+M2)E

I

(($2+M2)E

(3.2)

(3.3)

3.4)

3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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F 0
v, =—1, Mo _p at y=h,
2 oy
F oy
=——, —=0 at =h,,
Vi 5 EY y=m
(3.10)
91 =0 at y:hl’
The solution of the first-order problem is given by
1 d
y; =c;coshyo? + M?y + ¢, sinhvo? + M y—y Po s+
(0 +M2) dx
1 f . [
+cosh2Vo” + M7 y(Ls, + Ly;p) +sinh 2Vo” + M7 y(Lss + Lysy) + (3.11)

+sinhv/o”’ +MZJ’(L27 + L7y —Lagy” + Loy’ —Lygy* + Ly —L42y6)+
2 2 2 3 6

Hence, the corresponding first-order axial velocity and the temperature are

u,=No (c3smh\/c5 +M?y+c,coshio? + M ) dp1+

(cs +M2) dx

+3L31y2—2L15y+L32+

3 y (L5 sinh 3V'o? + M? y + Ls cosh 3\o” + M )
+sinh 2v/o” +M2y(L71 N +M2L33y)+ (3.12)
+cosh 2v/c? +M2y(L72 +2Vo? +M2L35y)+
+sinhvo’ +M2y(L73 + Lyyy+ Lysy? + Lygy® + Ly, p* +L78y5)+

+coshvo’ +M2y(L79 + Lggy + Lgyy” + Lgyy” + Lg3* +L84y5),
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coshvG™ + M7 y(kag + vhys ) +sinhn o™ + M7 y(kyg + vk, ) +

+cosh 2V’ +M2y(k30 theyy ks gy gy +kHy5)+
. 2 2 2 3 4 5

cosh3Vo” + M2 y(kyg +kyy)+sinh 3o + M y(kyy +kyp)+ | G13)

+h,g cosh N6 + M? y+kygsinh NG + M2 y+1ypy” +kyp)° +

4 5 6 7
thpy" +ho3y oy +hosy

+A;y+ A,

Finally, the expressions for the axial velocity and the temperature are given by

u=u,+Weu,, (3.14)
and

0=0,+We’0,. (3.15)

The pressure gradient is obtained as

L _Po s e B (3.16)
Here

dpy :(02+M2) cloytels—Fy 4 g P _Fi—Lisy
x h; —h, dx L;s3;

The non-dimensional pressure rise per unit wave length in the wave frame is given by
1
dp
AU=I—d>C- (3.17)
) dx

4. Results and discussion

The expression for the velocity field in terms of y is given by Eq.(3.14). Velocity profiles are plotted
in Figs 1 - 7 to study the effects of different parameters such as the permeability parameter »,the magnetic
parameter M, the Weissenberg number We, the phase difference ¢ and the amplitudes a, b on the velocity
distribution. Figures 1 and 2 are drawn to study the effect of ¢ and M. We notice that the velocity profiles
are parabolic. Further we observe that the velocity decreases with increasing ¢ and M. From Figs 3and 4, we
notice that the velocity increases with an increase in We and ¢ . Figure 5 reveals that the velocity increases
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with increasing a. From Fig.6,we noticed that the velocity decreases with increasing b. Figure7 depicts that
the velocity decreases with an increase in d.

; - - - 3

Fig.1. Velocity profiles for different 'c' with Fig.2. Velocity profiles for different ‘M’ with
fixed: a=0.5, b=0.5, d=1.2, x=0.1, ¢=6, fixed: a=0.5, b=0.5, d=1.2, x=0.1, $=1/6,
M=0.6, F=1.5, We=0.2. F=1.5,6=0.4,We=0.2.

on

: . . 45
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{-]1 0.5 0 0.5 1

Fig.3. Velocity profiles for different ‘We’ with Fig.4. Velocity profiles for different '¢p' with
fixed: a=0.5, b=0.5, d=1.2, x=0.1, $=1/6, fixed: a=0.5, b=0.5, d=1.2, x=0.1, M=0.6,
F=1.5,M=0.6, =04 . We=0.2, 6=0.4,F=1.5.



Peristaltic flow and heat transfer of a conducting ... 723

Fig.5. Velocity profiles for different ‘a’ with fixed: Fig.6. Velocity profiles for different ‘6’ with fixed:
b=0.5, d=1.2, x=0.1, M=0.6, ¢=mn/6, a=0.5, d=1.2, x=0.1, M=0.6, ¢=m/6,
We=0.2, 6=04,F=1.5. We=0.2, =04, F=1.5.

Fig.7. Velocity profiles for different ‘@’ with fixed: Fig.8. Temperature profiles for different 'c' with
a=0.5, b=0.5, x=0.1, M=0.6, ¢=mn/6, fixed: a=0.5, b=0.5, d=1, x=0.1, ¢=n/6,
We=0.2, 6=0.4,F=1.5. M=0.6, Br=2.
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0 —¢=n/d
/- . s . L

Fig.9. Temperature profiles for different ‘M’ with Fig.10. Temperature profiles for different '¢' with

fixed: a:0'59 b:055 d:], x:0']5 ¢=TC/6, fixed: a:0.5, b:05, d:], x:0.1, M:08,
c=0.2,Br=2. c=0.2,Br=2.
8 T T T T T 20

——g=01

Fig.11. Temperature profiles for different ‘Br’ with Fig.12. Variation of pressure rise for different 'c'
fixed: a=0.5, b=0.5, d=1, x=0.1, ¢=1/6, with fixed: a=0.4, b=04, d=1, ¢=m/8,
M=0.8, 6=0.2. M=0.5, We=0.01.
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15 - | T 2 T | .

25 L 1 L 20 L 1 1
-1 05 0 0.5 1 -1 -05 0 05 1
0 i
Fig.13. Variation of pressure rise for different ‘We’ Fig.14. Variation of pressure rise for different '¢'
with fixed: =04, b=04, d=1, M=0.5, with fixed: a=0.4, b=0.4, d=I1, We=0.02,
¢=m/8, c=0.1 M=0.5, 5=0.1.

Fig.15. Variation of pressure rise for different ‘M’ with fixed: a=0.4, b=0.4, d=1, We=0.02, c=0.1,
d=n/8.

Equation (3.15) gives the expression for the temperature field in terms of y. Temperature profiles are
plotted in Fig.8 - Fig.11 to study the effects of the permeability parameter o, the magnetic parameter M, the
phase difference ¢ , and the Brinkman number Br. Figure 8 is drawn to study the effect of ¢ on the
temperature. It is observed that the temperature profiles are parabolic and the temperature decreases with
increasing permeability parameter o .



726 K. Vajravelu, S.Sreenadh, S.Dhananjaya and P.Lakshminarayana

The influence of the magnetic parameter M on the velocity is shown in Fig.9. We notice that the
temperature increases with an increase in M. Figures 10 and 11 are plotted for different values of ¢ and Br.

It is noticed that the temperature increases with decreasing ¢ and an increase in Br.
We have calculated the pressure rise Ap in terms of the mean flow ® from Eq.(3.17). Figure 12
shows the effect of 6 on A p . We observe that for a given @, the pressure rise decreases with increasing o .

The effect of We is shown in Fig.13. It can be seen that the pressure rise increases with an increase in We
From Fig.14, we observe that the pressure rise decreases with increasing ¢ . From Fig.15, we notice that the

pressure rise decreases with an increase in M.
5. Trapping phenomena

The formation of an internally circulating bolus of fluid by closed streamlines is called trapping, and
this trapped bolus is pushed ahead with the peristaltic wave. The effects of o, M and ¢ on the streamlines
are shown in Fig.16- Fig.18. It is observed that the size of the trapping bolus decreases with increasing o
and M. Also, it is noticed that the bolus increases with increasing ¢ .

(=
=
=]

-0.4 -0.1 0.0 0.2 04 -0.4 =01 00 01 04 =04 -02 0.0 [1 1] 04

Fig.16. Stream lines for a=0.4, b=0.3, d=1.3, ¢ = Tc/6 , We=0.01, F=10, M=0.6 and for different values of
o:(a) 0=0.8,(b) c=09,(c) c=1.

T W [ L L e T T
1l {4t {4t
7 7 9
0 ]
i ikl -1
- {4t -4
U SRR ST ST T TN M NN TN SN SN TR N S S T TN S ST ol B PO T T S T S DO S S T S Trsd O SO (R B (rL | Y N N TR TN T U T T T [N T o |
-0.4 -02 09 02 04 -0.4 -0.2 0.0 0.2 04 -04 D2 0.0 02 0.4

Fig.17. Stream lines for a=0.3, b=0.3, d=1.2, 6 =0.86 , We=0.001, F=8, and for different values of M: (a)
M=02,b) M=03,(c) M=04.



Peristaltic flow and heat transfer of a conducting ... 727

4 ] 4t 14
2l 1] g
0 of 0
L =3 -2
4 sl s
04 -02 00 02 04 04 02 00 02 04 04 02 00 02 04

Fig.18. Stream lines for a=0.4, b=0.3, d=1.2, 6 =0.87 , We=0.001, F=8, M=0.2 and for different values of
¢:(a) 6=0,(b) ¢=1/8,(c) d=n/6.

Nomenclature

a;, b; —amplitudes of the waves

¢ —wave speed
D — deformation-rate tensor
d;+d, —width of the channel

d/dt — material derivative
Ec - Eckert number

— identity tensor

— relaxation time

ky — permeability

N

M — magnetic parameter

P,p —pressures in the laboratory and wave frames respectively
Pr — Prandtl number
p —pressure

Re — Reynolds number

s — Oldroyd’s upper-convected derivative
T —temperature
T — Cauchy stress tensor
t —time
tr —trace

— velocities in laboratory frame

) — velocities in wave frame
V' —velocity
) — where the X — and Y — axes are taken respectively parallel and transverse to the direction of wave
propagation
We — Weissenberg number
8 — wavenumber
A —wave length
K — dynamic viscosity
6 —permeability parameter
¢ —phase difference varying in the range 0 < ¢ <=



728 K. Vajravelu, S.Sreenadh, S.Dhananjaya and P.Lakshminarayana

Appendix

L, —;dpl+l, L, =cosh\o? + M?h; —coshNo? + M7 h,,

ol +M? dx

L; =sinh~c? + M?h; —sinh~o? + M2 h,, L, =cosh~o? + M?h; +coshNo? + M7 h,,

hy+hy))( 15 - L5
L' =sinho? + M7 hy +sinho? + M7 hy, I = (o) 2)+(h2—h]) :

(Lt 11))

¢ = , =

dp, Y dp, Y

¢ - 2, L4:(ﬂj +3(02+M2)[ﬂj’

¢ 7 ¢\ ¢ ’ cy ’ ¢ ’ ) ¢ ’ ¢\ ¢ ’
Li=|L| 43 L |22, L,=|22| 3| L| |22, L=|L| |22,

2 2 2 2 2 2 2 2 2

(e (e (e (e (), (e, e)3ENoT M’

Ly = o Ly= s L= + )

2 2 2 2 2 2 2 2

2 2
1, < 3bNe v M7 W(C_z_c_zj, Luz(c_zj +(C_zj, Lng(c_zj(c_zj,

2 2 2

3
LM:L]O_LI] WD, L= Lyg+ 1Ly, . Ly =3LLy+ 26L1 - Lip=Ly; ’
3 el + M? o' +M 2(02+M2)
2 d 6L; 2L;,L
Ly, =3(c” +M7) ((52+M2)+%], Ly =———+2L,, ngz—( = 172),
G +M 3o+ M
Ly = Lizeie; L, 8LisLy; L, = deierLyy 3 = Li7Ls
3( 2+M2) 9(02+M2)3/2 9(02+M2)3/2 (02+M2)
2
LiL; (c1+c)Lilyy (e +es)Lily;
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L, 6L
Lyy=—fF——=, L3 =Ly —Ly—- L32=L16_L23_—49

Mo +M? (02+M2)’ (02+M2)2

SLiL;s

_L229
3(c” +M?)
8L,L / L

L33 = L19 - 2L1L12, L34 = L35 = Lzo - 2L1L13 >

5/2°7
3(02+M2) 40 +M2)
38 — 5 229 39 — 5 23/2’ 40_4 P M2 >
1(0” + M) 2(0” + M) (07 +n?)
Lsyc, Lsyc 15L;,c
2 (G +M) 4(62+M2)
L, - 15L;,c, L Ly- 5Lspc, Ly, L= 5fgoc22 ,
2 2 2 2 4lo°+M
4(c”+M7) 2(c” +m?) ( )
Lsyc; Lsyc;
Ly = > o\ t48 = s Lyg =L31h1 L15h1 +Lsohy s
2( +M )
Lscosh3,|(o” + M7 ), + Lsinh 3, /(o7 + M7 ), C

. 2 2 3 4 5 6
Ls; =sinh 2 (52 +M )hI(L36 +Lsshy), Ls3=Los +Lyshy = Lyghy +Laghy, Lsy =—Lyyhj +Lyhy —Lyohy,

. 2 2 3 4 5 6
Lss =sinh (GZ +M )hI(L53 +L54), Lsg =Log + Lyshy —Lyyhy + Lyshy, Ls; =—Lyghy +Lyyhy —Lyghy

‘ 2 2 3

L5cosh3‘l G +M? h2+L6s1nh3,/ c +M?
Lg; = , L62_cosh2,/ c +M? hZ (L3y +Lszhy)

. / 2 2 3 4 5 6
Lz =sinh2 (02 +M )hz (L36 +L35h2)’ Lgy =Lo; + Lg;hy — Lsshy + Lyghy, Lgs =—Lyghy +Lyihy —Loh;,
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. 2 2 3 4 5 6
Lgs =sinh (GZ +M )hz (L64 +L65)’ Ls; = LogLyshy — Ly + Lyshy, Leg =—Lyshy + Ly hy —Lyghy

b

2 2

Ly =Ly +2,|(0” + M |Lsg, Lys =Ly +\(07 +M? |Lyg, Ly =[(07 + M7 )Ly 2L,
Lys=3Ls9 _\[(02 +M2)L44, Ly Z\/(GZ +M2)L45 —4Ly, L7 =51y —\/(02 +M2)L46>
Lyg= (7 + M2 )Ly =6Ly5, Lyg=\[(07 + M7 )Ly + Lys, Ly = (o7 + M7 )Ls; - 2L,

2 2
Lgy=3Ly5— (02 +M )L4sl77a Lgy =0L3g —4Lys, Lz =ILy7 — (02 +M )L4o,

2 2 2
Lgy = (G +M )L41 =0Lys, Lgs=3Lsihi —2L;sh; +Ls,,

Lssinh3,(o” + M |y +Ls cosh 3 /(02 + M2 )iy
Lgs =30 y ,

Lgy =sinh2,(o” +M° (17, #2/(c7 M )Lﬁ,h,), Lgg =cosh2,((o” +M° )i, (1,72 +2)/(0” + 7 )L35h,j,

Lgg =Lyz + Lyyhy +l75h12, Ly, =L76h13 +L77h14 +l78h15a Ly, =Sinh\/(52 +M2)h1 (L89 +L90),
2 3 4 5 / 2
Loy =Lyg + Lgghy + Lg;hy, Loz = Lgyhy + Lgshy + Lgyhy, Loy =cosh (GZ +M )hI(L92 +L93) )

2
Lys =Lgs + Lgs + Lg; + Lgg + Loy + Loy, Lgg =3L3;h5 —2L;5hy + Ly,

Los (GZ+M2) Lssinh3 /(02+M2)h2+L6cosh3 /(G2+M2)h2 |
4
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Lyg =sinh 2,[(o” + M7 ), (Ln +2,)(o7 + M )L33h2), Lyy =cosh 2 /(02 + M7 iy (LU +2,)(o”+ M )L35h2),

2 3 4 5 (2 2
Ligg =Lyz + Lyshy + Lyshy, Lygy = Loghy + Lyhs + Lyghy, Ly, =sinh (G +M )hz (L100 + L101)a

2 3 4 5 2
Lygs =Lyg + Lgghy + Lg; 5, Lygg = Lgohs + Lgzhy + Lgshs, Lyys =cosh (02 +M )hz (L103 +L]04),

1 1 2 2
Ligs =Los + Loy +Log + Log + Lygy + Lygss Lyg7 =Lys Lygs =Lz, Ligg =Ligs —Lig7>

L110Z_L(Ii(hlj;f;)+(cszg)L1o7, LHI:\/(02+M2)L108(L59+L/0)_L107(L95+L106)a
+

1 dp,

7(02 +M2)7dx (hy +hy)=(Lsg + Ly ) — 4Lygs _(dpo Lo +L111j

3= , Cy= 5
Lygy Lygg

Lyyy =cosh3f(c” + M7 )b, —cosh 3 [(c7 + M2 )hy,
Lors = st s (o7« w0 7 Ya, —sinn s J{o7 5 0 i,
b =cosh 2 (o 307y o2, o 3 .

L5 = h; cosh ZWh, — h, cosh ZW@,

L5 =sinh 2Wh] —sinh ZW@,

L;;; = hysinh 2Wh, — hysinh 2th,

Ls LsLyjp+LsLyys Lo = Ly (L71 +L; - L35)
4 2\/(02 + MZ)

(Lyz+Lyg) +2(L75+L81)+24(L77+L83)
(02+M2) (02+M2) (02+M2)5/2.

b

L120



732 K. Vajravelu, S.Sreenadh, S.Dhananjaya and P.Lakshminarayana

:(L74+L80)+6(L76+L82)+120(L78+L84) 22(L75+L81)+24(L77 +Lg;)
121 (62+M2) ((52+M2)2 (62+M2)3 > 122 ((52+M2) (G2+M2)2 >

= (L74 +Lgy) N 6(Lys +Lgy) +]20(l78+l‘84), Ly = (Lys +Lg7) +]2(L77+L83)’
\/(62+M2) (62+M2)3/2 (62+M2)5/2 \/(02+M2) (02+M2)3/2

L= 3(L276 +L§2) ) 60(Lyg +L842,)’ Ly =Ly + Ly (Lys +Lgy) L 20Lg, |, (L727 +L823)’
(6 + M%) (0?17 (o7 +27) (0?4 0?) (oF+217)
L; (L77 + L83) 5L, (L78 + L84)

Lyy; = s Lipg=Lyg+Lijg+LsLing—LyLyyy,

(c +M2) (02+M2)

Ly = (hl —hy )(L32—L2L122 + L3L123 + (h —h; ) LiLjy—LyLyss — L15)
(i -m)

’\u.
Nu.

—h
L39

Lys0 :(hl hz)Lm +(h ~# )Lm "ot ea?) (02 +M2)

(hl +hy )L2L109 + (52 +M? )L110L108 - (02 +M? )L3L107 - (hl —hy )L107L109

Lz =

2

(02 +M? )L107L109

L117 (L3L107 B L108)_ L109L2 (L59 + L70 )J

Lysy=Ljyg+Lisg+ Lz +( I 1
107109

2,2 22
¢ +c csc ¢ —c [ [
L2 _ a,= 2 , ay=—2—L, D,za](coshZ (52+M2h,—cosh2 02+M2h2),

“ 8o’ + M) 4(o +17) 4
D, =a2(sinh2\/c$2 +M? h, —sinh 26’ +M2h2), D; =a3(hj —hj), D, =a;cosh2No® + M7 by,

Ds=a,sinh2No® +M’hy, Dy =a;h’, 4,

2, a2V
(07 + M) Br(D; + D, +Dy) 1,
hl_ 2

hl_h2

b

Ay =2BcPr(0” + M2 Vs = Ashy, s =c3(0” + M7 )+ Lyo? + M7 + Ly,
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k= S5 N 4s;+ 1555 N S; N 185, N 9Ls N 60Lg,

2 ag2 3 3 5 TS 3
8(" +M) 16( 02+M2) 8( 02+M2) 64( 02+M2) 32(\/0 +M ) 32( 02+M2)

b

3 3 9L 60L
kz _ S6 + " S8 n SIO B 6 N 78

8(02+M2) 8( 52+M2)3 16(G2+M2)2 4(02+M2)3 32(\/02+M2) 32(62+M2)3,

S2

s = S5 N 3s, N Sg N 65;9+16Lg
2 2 2 3 5°
8(0” +17) 4(o”+ M) 4( 02+M2) 4( 02+M2)
k, = 53 N S; N 95 N 1555+ 30Lg,
3 2 2 2 5°
4( 02+M2) 8(o® +17) 16(c +M?) 8( 52+M2)
k5 _ S3 + 24S5 +6S9 + 60L84
2 2 3 2°
8(6 +M ) ( 02+M2) 16(02+M2)
K, = 65y N Sg N 185,90 +75L,g , = Sy N S0 +3Lgy
3 2 2 2 2 3
g = Sy N 4ss +15Lg, = 2ss+5Lg, Ky = S;9 +ILg = c;Lyg +c,Lgy
8((52+M) 8( 02+M2)3 8(62+M) 8((52+M) 8(~/02 +M2)
cyLyg +c;L s 4L s 4L
k=22 782 1 (S;4’ ks = 211 + 235 . k= 212 n 233 .
8( o'+ M ) 18(0 +M) 27( o'+ M ) 18(0 +M) 27( o'+ M )



734 K. Vajravelu, S.Sreenadh, S.Dhananjaya and P.Lakshminarayana

4L 4L;5,+2L

ks = j” Er, ki = jjz + 2, ki7 =ciLs3 —c;(2Lss —6Ls;),

2(o” + M) ( 02+M2) 2(o” + M) ( 02+M2)

_9(C]L5 +C2L6): _9(CZL5 +C]L6) _(C]S]_C2S6) _(C]SZ_C2S7) k _7(C]S3_Czs8)

18 — > 5 19 — 3 2 20 — 4 > 21— 4 > 22— 24 ’

128No” + M 128No” + M

15(s,—s 2955 —47s > 5
k23:%, k24:%, k25= 62+M2(CIL78_CZL84)9 k26:C1L33_02k17,

ky; =cyLzz —cikyy, kyg =cikis —cokis, ka9 =Cokis —cikis, kzg =cikyp—crky, ks =cikz +coky,

k3y =ciks +cokg, ki3 =cik; +crkg, k3y=cikg+crkyg, kss=ciky ek, ksg =ciky +coks,

k3; =ciks +Coks, kg =cikg +crky, kg =cikyg +Crkg, kyy=cikiz +cokpy, ky =5(01L33 +¢Ls5),
kyy =cikpy +cokps, kg =§(CJL35 +¢5Ls3),

kg = cosho? + M2 hy (kg + ks )+ sinh &2 + My (ks + ks ),

Jeys = cosh 26 + M Iy (kg + hykesy +Ksphy” +lesh] + s i + by i) ),

Jegs =sinh V67 + My (ks + hykesg + sy’ +lesghy + kshf + k07 ),

ky; =cosh3a? + M2 hy (kyy +kyohy ) +sinh 3N6? + M2 by (kyy + kyshy),

kg = cosh4No? + M? hyk,g +sinh 43 o? + M2 bk, ),

kgg = kaghy” +kyrh] +kyohi +kysh] +koghf +kyshy,
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ksp =coshNo? + M? hy (kyg + ok ) +sinho? + M2 hy (kyg + hoksy; ),
ks, =cosh2No” + M2 h, (k30  yksy +kgohy” + kyshl + kg hd + kb3 )
ks, =sinh 2No” + M2 h, (k35 Bk +ksrhy” + kyghd + ksoht +k12h25),
ks3 =cosh3No? + M? hy (kyy +kyohy ) +sinh 3o + M7 iy (kyy +kyshs),
ks, = cosh4No? + M? hyk;g +sinh 4N o? + M? hyk,y),

kss = koghy” +ky h3 +kyyh3 + kpshy +koghS + ks,
ksg =kqg +kys +hys +kyy +kyg +kyg,ksy =kso +ksy+ksp + sz +ksy + kss.
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