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The paper deals with a FEM analysis of  dynamic buckling of functionally graded clamped plates under heat 

flux loading with huge power. The materials of structures as well as their properties are varying in each layer 
across the plate thickness formulated by the power law distribution. The heat flux was applied evenly to the 
whole ceramic surface. The analysis was developed in the ANSYS 14.5 software. The duration of the heat flux 
loading equal to a period of natural fundamental flexural vibrations of given structures was taken into 
consideration. To implement large deflections of structures, the Green-Lagrange nonlinear-displacement 
equations and the incremental Newton-Raphson algorithm were applied. An evaluation of the dynamic response 
of structures was carried out on basis of the Budiansky-Hutchinson criterion. The studies were conducted for 
different volume fraction distributions and different shapes of the heat flux loading. The computation results of 
the heat flux versus maximal plate deflection are shown and discussed.   
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1. Introduction 

 
 The first concept of functionally graded materials (FGMs) was proposed in 1984 by scientists in 
Japan. Since that time high heat-resistant materials using functionally graded know-how have been 
developed until today. FGMs comprise  a mixture of metal and ceramics in different proportions in order to 
achieve proper characteristics. Material properties continuously change from one surface to another, 
excluding an appearance of some problems, concentration of thermal stresses, among others. These materials 
are microscopically heterogeneoues and can be manufactured from isotropic constituents mostly such as 
metals and ceramics. Due to low thermal conductivity of ceramics, FGMs can be applied in the ultrahigh 
temperature environment such as nuclear plants, aerospace, thermal ballistic shields or space vehicles, etc. 
The ceramic material can withstand immensely high temperatures (above 2000 K) whereas metal is 
responsible for the strength component ensuring a constituent structure. 
 Taking a look at literature concerning FGMs, many analyses have been pursued and described. Tung 
and Duc (2010) presented a simple analytical approach to the investigation of the functionally graded plate 
stability under in-plane compressive, thermal and combined loads. They assumed temperature-independent 
material properties graded in the thickness direction. The problem was solved using the classic plate theory. 
Na and Kim (2005) conducted the thermal buckling and postbuckling analyses for FGMs up to a uniform and 
non-uniform temperature rise, applying the finite element method. In the calculations, they used the Green-
Lagrange nonlinear strain-displacement relation for large deflections. Javaheri and Eslami (2012), on the 
basis of a higher order shear deformation plate theory, examined the stability of the functionally graded plate 
under thermal loads. They took four types of thermal loads into consideration and compared their results of 
buckling loads to the classic plate theory ones accessible in the literature. It was stated that the CPT 
overestimated the buckling temperature. The post-buckling response of the functionally graded material plate 
subjected to thermal and mechanical loading was studied by Wu et al. (2007). The researchers assumed 



20  L.Czechowski 

 

different types of boundary conditions based on the first-order shear deformation theory and von Karman 
nonlinear kinematics. Bodaghi and Saidi (2010) investigated buckling of thick functionally graded plates. 
They converted the governing stability equations into uncoupled partial differential equations and obtained 
the results using the Levy-type solution. Samsam Shariat, Javaheri and Eslami (2005) presented the analysis 
of FG plates with different geometrical imperfections. On the other hand, in the literature we can find many 
papers devoted to studies of the structure response under in-plane pulse loading of finite durations (dynamic 
analysis). Praveen and Reddy (1998) studied the static and dynamic response of the functionally graded 
material with different volume fraction. The FG plates were subjected to temperature field. Czechowski and 
Kowal-Michalska (2013) analysed the buckling phenomenon for static and dynamic loading (pulse of finite 
duration) of functionally graded plates subjected to uniform temperature increment. They investigated FG 
structures for different values of volume fraction index and uniform temperature rise in the form of a 
rectangular pulse of finite duration. Jankowski and Kowal-Michalska in (2013) examined a simply supported 
squared girder subjected to various thermal pulse loadings. They analysed an influence of different types of 
pulse load, initial imperfection and time on dynamic buckling behavior. 
 Kowal-Michalska (2007), Mania and Kowal-Michalska (2007), Kowal-Michalska and Mania (2007), 
Mania (2011) and Volmir (1972) investigated the behaviour of different structures made of isotropic, 
orthotropic or composite materials. In these works, it has been also ascertained that dynamic buckling 
occurred for pulses of the intermediate amplitudes when the duration of dynamic load was close to a period 
of the natural flexural vibrations of the given structure. As far as dynamic buckling is concerned, damping 
effects do not have a significant influence upon structure responses. In comparison to static buckling, 
dynamic buckling appears only for structures with initial deflections because the dynamic buckling load of 
bifurcational type does not exist.   
 In the present analysis accomplished on basis of the finite element method, functionally graded 
plates subjected to the heat flux pulse are examined. Furthermore, different distributions of material inwards 
the plate according to the power law distribution index are taken into consideration.  In the transient analysis, 
a plate composed of solid elements with varying material properties in each layer is considered. Calculations 
are carried out incrementally using the Newton-Raphson convergence approximation method. The pulse 
duration is equal to one period of the natural flexural vibrations of the given structure with different material 
properties distribution across the plate thickness. In this investigation, different shapes of the heat flux pulse 
on the whole ceramic surface are examined.       
 
2. Material description   
 
 The plates considered in this work were built of continuously varying material properties across the 
thickness direction. On the bottom surface of the plate, a pure metal is taken and it grades finally to the top 
surface composed of ceramics only.  The volume fractions of two materials in this case metal Vm and 
ceramics Vc have been formulated through a power law distribution Eqs. (2.1) and (2.2).  
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  ( ) ( )c mV z 1 V z   (2.2) 
 
where n ( ,n 0  ), if n 0  - pure metal; if n  - pure ceramics) represents the material variation 
distribution index across the plate thickness (marked by h). A volume fraction of ceramics and metal in a 
function of the distribution index across the plate thickness is plotted in Fig.1. The material properties )(zP  
in relation to the layer position through the plate thickness are expressed as follows 
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Fig.1. Volume fraction of ceramics and metal dependent on the distribution index across the plate thickness. 

 
3. Numerical models  
 
 Generally, the relations between stresses and strains can be written as 
 

  { } [ ] { }elD     (3.1) 
 

where { } [ ]Tx y z xy yz xz         denotes the stress vector, D - stiffness matrix and { } { } { }el th     - 

elastic strain vector, respectively. The total strain vector and the thermal strain vector are expressed by 

{ } [ ]Tx y z xy yz xz         and { } [ ]th s s s T
x y zT 0 0 0       , however, , ,s s s

x y z    stand for secant 

coefficients of the thermal expansion and T is an increase and a decrease in temperature.   
 The equation of the principle of virtual work is as follows (Documentation for Ansys) 
 
  U V   , (3.2) 
 
where 1 2U U U   and 1 2 3V V V V    demonstrate the strain energy (internal work) and the external work, 

respectively. The virtual strain energy is composed of { } { } T
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(in the case when a surface opposes due to the external pressure), where the quantities mean: Vol volume 
of the element , nw  motion normal to the surface, A  area of the element. The external energy consists of 

a factor concerning acceleration (d’Alembert force vector), a factor determining the pressure force vector 
and, finally, a factor representing external forces related to nodal forces. Hence, the total external virtual 
work for finite elements has the following form 
 

   
{ }

{ } [ ] [ ] { } [ ] { } { } { }

p

2
T T T T nod

n p e2
Vol A

u
V u N N dVol u N P dA u F

t


               

   (3.3) 

   



22  L.Czechowski 

 

where:   density, t  time, [ ]N   matrix of the shape functions, }{P  applied pressure vector, ][ pA  

whole area on which the pressure acts, ][ nN  matrix of the shape functions for normal motions at the 

surface, }{ nod
eF nodal forces applied to the element. Finally, if one inserts the relations 

{ } { } [ ] { }n nk w k N u       and { } [ ] { }B u    into the strain energy, where k denotes foundation stiffness, 

][B  - strain-displacement matrix, and { }u - nodal displacement vector and next, noticing that the { }Tu  
vector is determined by the same arbitrary virtual displacements, then after some reductions, Eq.(3.3) can be 
written as 
 

   ([ ] [ ]) { } [ ] { } { } { }f th pr nd
e e e e e eK K u F M u F F        (3.4) 
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 Referring to the first law of thermodynamics, the general equation can be written as 
 

  { } { } { } { }T TT
c v L T L q q

t

        
   (3.5) 

 
where  , c, T, t, { }L , }{v , }{q  and }{q  denote density, specific heat, temperature ( , , , )T T x y z t , time, 
vector operator, velocity vector for mass transport of heat, heat flux vector, heat generation rate per unit 
volume, respectively. 
 The next relation concerns Fourier’s law linking  the heat flux vector to the thermal gradients and 
can be formulated as 
 
  { } [ ]{ }q D L T   (3.6) 
 
where ][D  represents conductivity matrix. 
 If one connects the above relations Eqs (3.5) and (3.6) and expands their form, the following 
equation is obtained 
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where xK , yK , zK  denote conductivity coefficients. 

 SOLID90 is a higher order version of the 3-D eight node thermal element (Fig.2). The element has 
20 nodes with a single degree of freedom temperature at each node. The 20-node elements have compatible 
temperature shapes and are well suited to model curved boundaries. 

 

 
 

Fig.2. Finite element applied in simulation (solid 90-thermal and solid186-structural). 
 
 The 20-node thermal element is applicable to 3-D, steady-state or transient thermal analysis. 
solid186 is a higher order 3-D 20-node solid element that exhibits quadratic displacement behavior (a view 
of this element is the same as SOLID90 - see Fig.2). The element is defined by 20 nodes having three 
degrees of freedom at each node, namely translations in the nodal x, y, and z directions (Documentation for 
Ansys). The element can be used for the plasticity, the hyperelasticity, the creep, the stress stiffening, large 
deflection and large strain capabilities. It also has combined formulation capability for simulating 
deformations of nearly incompressible elastic-plastic materials, and fully incompressible hyper-elastic 
materials.  
 The presented work deals with the plate of all clamped edges under thermal heat flux loading in a 
short time. The duration of pulse loading pt  was equal to 01t , where 0t  is a period of natural fundamental 

flexural vibrations of the structure. In the studies, different pulse shapes were considered (see Fig. 3). 
Assumed shapes 2, 3, 4 have a equal area of energy and two times smaller than shape 1.  
 

 
 

Fig.3. The shapes of heat flux pulses considered in studies. 
 

 Due to the possibility of greater deflections after the thermal load ceases, the observation of plate 
lasted always twice as long as the pulse duration.         
 Budiansky-Hutchinson (1966) introduced a factor called the Dynamic Load Factor (in abbreviation, 
DLF ) and it can be determined in case of the heat flux load as 

1)          2)             3)          4) 
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where following magnitudes demonstrate:   

dynq   amplitude of the heat flux in MW, 

static
crq   critical buckling heat flux obtained in static buckling analysis for duration 0t . 

 According to accessible literature, some criteria of dynamic stability of thin-walled plate structures 
can be found. One part of criteria are based on the geometry entity (mainly, on the condition of reaching 
some deflection and shortening by the plate) or energy criteria relying upon potential or kinetic energy. 
Another criteria relate to the condition of the structure failure by reaching the maximal value of stress. Only 
few of them are shortly described below. 
 Volmir (1972) presented the simplest criterion of dynamic stability. It was suggested that the critical 
dynamic load is found if the plate deflection amounts to 1h or 0.5h, where h denotes the plate thickness.  
 Budiansky-Hutchinson (1966) implemented a criterion based on the state when the plate deflection 
grows rapidly at a small variation with a load.  
  
3.5. Boundary conditions and simulation conditions 
 
 The investigations were performed for one type of structures, namely a square plate. The system of 
coordinates and the considered boundary conditions of the structure are presented in Fig.4. In all cases, 
dimensions of the plate were as follows: a = 1m, b=1m, and thickness h=0.01m.  
 

 
 

Fig.4. The numerical model of the clamped plate. 
 
 Numerical simulations were carried out in two separate analyses. In the first stage, it was important 
to calculate the natural flexural frequency for each plate with regard to n  distribution index. For found 
periods relating the natural flexural frequency for a given plate, the critical heat flux in static buckling 
analysis was determined (it allowed determining an amplitude of the heat flux). Afterwards, an adequate 
simulation for known time and amplitude (transient analysis of dynamic plate response under heat flux) was 
incrementally carried out. The computations were performed for different shapes of the heat flux without a 
damping coefficient (in the literature it was stated that for those durations damping is not of great 
importance). For all the plates, the initial deflection .0w 0 01 h   referring to the first buckling mode was 
taken into account. Simulation in the thermal scope under the heat flux pulse, was to determine the 
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temperature distribution in the entire numerical model in the each step of the load duration. Further structural 
simulation was possible due to the temperature distribution application in the plate mesh what allowed 
obtaining interim stresses and displacements in the whole structure in the entire time. The observation of the 
structure behavior relied upon a record of maximal deflections of the plate throughout the simulation.  
 For the investigations, material properties for ceramics (Al203) and metal (Ni) for the FGM plate 
structures were assumed and are shown in Tab.1.  
 
Table 1. Material properties of ceramics and metal. 
 

Materials properties Al203 Ni 
Young modulus [GPa] 393 200 

Thermal expansion coefficient [
/1 K ] . 613 3 10 . 68 8 10  

Poisson ratio [-] 0.25 0.3 

Desity [ / 3kg m ] 3400  7800  

Thermal conductivity coefficient 
[J/m*s*K] 

30 72 

Specific heat [J/kg*K] 880 460 

 
4. Results and discussion of the numerical solution  
 
 In this section, responses of the FGM plate clamped on its all edges under transient heat flux load are 
investigated. In the analysis, different volume fraction indexes and different shapes of the pulse were taken. 
The first diagram (Fig. 5) displays the temperature distributed inwards the plate thickness under rectangular 
heat flux pulse which can bring about the static buckling of the plate. Indeed, it can easily be observed that 
for a short time of the heat flux effect, the highest temperature appears on the side of the affected surface and 
rapidly drops to 0 in the plate depth of 0.15 thickness, regardless of a value of the volume fraction index. For 

pt 1s , if a small heat flux is applied, the obtained temperature distributions seem to be proportionally 

variable inwards the plate thickness and the value of the temperature starts from 150 K and decreases to 
almost 0 K on the metal side. For this case, because of the smaller heat flux pulse, the load duration can be 
pretty long and finally causes the flow of a heat throughout the plate thickness. Figures 6-10 illustrate the 
plate response under four considered pulse loads. In all cases, the pulse duration was equal to a period of 
natural flexural vibrations of a given plate. To assess the behavior of the dynamic buckling plate, the 
Budiansky-Hutchinson criterion was taken into consideration (see subsection 3.4). If the first shape is under 
investigation (found in the literature as the most dangerous – see Fig.3), it can be noticed that the full 
ceramic plate (for n ) is most resistant to the heat flux load. In this case, the dynamic critical heat flux 
ranged from 78 MW for n 0  to 190 MW for n . For a clear view of the results of estimations, critical 

values of the heat flux and cr
qDLF  for all considered pulses are inserted in Tab. 2. If qDLF  for different 

distribution indexes was taken into account, it is simply noticed that all the curves have a similar course. 

When the plate losses dynamic stability (if cr
qDLF  is reached on the basis of the Budiansky-Hutchinson 

criterion), the deflections of the plate amount to below one thickness. If one takes a look at Fig. 6b, cr
qDLF  

is equal to about 0.90÷0.98. The next plots (Figs. 7a and 7b) deal with another pulse shape, namely shape 2. 
Applying a triangular shape (pulse 2), the heat flux spanned from 220 MW for n 0  to 480 MW for n   . 
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Fig.5. Temperature distribution across the plate thickness. 
 

a)                                                                   b)   

 
 dynq MW   

 
qDLF   

 
Fig.6.  Maximal deflection of the plate versus a) dynamic heat flux load or b) qDLF   for different 

distribution indexes for shape 1. 
 

 As far as cr
qDLF  is concerned, the lowest value launches from 1.76 for n 5  up to 2.77 for n 0  

(see Fig.7b). In comparison to previous curves for shape (Figs 6a and 6b), the received curves have a slightly 
other character. In the later one it was observed in some scope for all investigated distribution indexes the 
proportional growth of the plate deflection in function of the heat flux. Similarly, another pulse shape 3 
causes comparative plate response as the pulse shape 2 and those both curves are almost the same (Figs 8a 
and 8b).  
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a)                                                                 b)   
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Fig.7.  Maximal deflection of the plate versus a) dynamic heat flux load or b) qDLF  for different distribution 

indexes for shape 2. 
 

Table 2. Periods, critical values of temperatures for case 1. 
 

distribution  
index n 

t0 

[ms] 
 

static
crq  

[MW] 

Pulse shape 1 Pulse shape 2 Pulse shape 3 Pulse shape 4 
cr
dynq  

[MW] 
cr

qDLF
cr
dynq  

[MW] 
cr

qDLF
cr
dynq  

[MW] 
cr

qDLF  
cr
dynq  

[MW] 
cr

qDLF

0 11.6 79.3 78 0.98 220 2.77 220 2.77 560 7.1 
0.3 9.7 96.5 90 0.93 - - - - 690 7.15 
1 8.13 111.4 120 0.98 320 2.87 320 2.87 910 8.19 
5 6.49 158.9 - - 280 1.76 380 2.39 1260 7.92 
∞ 5.46 221.0 190 0.9 550 2.61 550 2.61 1760 7.96 

 
a)                                                                 b)   
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Fig.8.  Maximal deflection of the plate versus a) dynamic heat flux load or b) qDLF   for different 

distribution indexes for shape 3. 
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 However, one visible difference only appears for n 5  and in this case the critical heat fluxes 
amounted to 280 MW and 380 MW, for pulse shape 2 and pulse shape 3, respectively. The discussed pulses 
(2 and 3) relate to a real pulse which the high-performance laser can produce. Substantially different results 
have been obtained for pulse 4 (isosceles triangle – Figs 9a and 9b). It turned out that this type of the pulse 

shape is the least dangerous because a rapid growth in the plate deflection occurs only just at cr
qDLF  equal, 

in dependence on volume fraction index, to values of  7.1÷8.19.  
 

a)                                                                 b)   

 
 dynq MW  

 
qDLF  

 
Fig.9.  Maximal deflection of the plate versus a) dynamic heat flux load or b) qDLF   for different 

distribution indexes for shape 4. 
 

 Regarding case 4, all the curves differ from the curves determined for cases 1, 2, 3. Especially, it is 
easily seen that at some value of the heat flux, a sudden jump of the plate deflection follows. Moreover, 
observing the chart, with a further small increase of the heat flux pulse, deflections of the plate still rise to a 
great extent. A comparison of the plate response of all heat flux shapes for n 1  is shown in Fig.10.   
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Fig.10. Comparison of the plate response for all assumed shapes for n = 1. 
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 As was previously shown in Tab.2, the pulse shape 4 affects in the lowest degree ( .cr
qDLF 8 19 ). 

The most dangerous still seems to be the rectangular one which delivers the energy two times greater (for 

this case .cr
qDLF 0 98 ). The types 2 and 3 cause the same response of the plate as shown in Figs 7-8. In 

case 2 and case 3 it was noticed that .cr
qDLF 2 87  (about three times greater than in case 1 and three times 

smaller than in case 4). 
 
5. Conclusions 
 
 In this paper, numerical simulations of the heat flux action in a functionally graded plate  based on 
the finite element method were pursued. Each plate underwent transient heat flux loads on one ceramic 
surface in time corresponding to a period of natural flexural vibrations for the considered volume fraction 
index. The main aim of this analysis was an evaluation of the plate behavior under real ultrahigh-
performance heat flux effect. It was concluded that, first of all, the volume fraction exponent plays a great 
role in the dynamic response of the plate. Another meaningful influence which can be considered resulted 
from the shape of the heat flux load. 
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Nomenclature 
 
 [ ]pA    whole area on which the pressure acts 

 , ,a b h   plate dimensions 
 [ ]B    strain-displacement matrix 
 c   specific heat 
 qDLF   dynamic load factor 

 { }nod
eF   nodal forces applied to the element 

 xK , yK , zK    conductivity coefficients 

 k   denotes foundation stiffness 
 { }L   vector operator 
 [ ]N    matrix of the shape functions 
 [ ]nN    matrix of the shape functions for normal motions at the surface 

 n   material distribution index 
 { }P    applied pressure vector 
 cP   properties for ceramics 

 mP   properties for metal 

 ( )P z   material properties in z-direction 
 dynq   amplitude of the heat flux in MW 

 static
crq   critical buckling heat flux obtained in static buckling analysis for 0t  

 { }q    heat flux vector 
 { }q    heat generation rate per unit volume 
 T   temperature 
 t   time 
 0t   a period of natural fundamental flexural vibrations of the structure 
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 pt   pulse duration 

 U   strain energy 
 { }u    nodal displacement 
 V   external work 
  c

V z   volume fraction for ceramics 

  m
V z   volume fraction for metal 

 w–   plate deflection 
 0w   initial plate deflection 

 z  coordinate towards plate thickness 

 , ,s s s
x y z      secant coefficients of the thermal expansion 

 { }   total strain vector 

 { }el   elastic strain vector 

 { }th   thermal strain vector 
 , , , , ,x y z xy yz xz        strain components 

 { }v   velocity vector for mass transport of heat 
    density 

 { }   stress vector 
 , , , , ,x y z xy yz xz        stress components 
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