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A general numerical analysis theory capable of describing the behaviour of a non-uniform beam resting on 
variable one parameter (Winkler) foundation under a uniform partially distributed moving load is developed. The 
versatile numerical solution technique employed is based on the finite element and Newmark integration 
methods. The analysis is carried out in order to evaluate the effect of the following parameters (i) the speed of the 
moving load (ii) the span length of the beam (iii) two types of vibrating configurations of the beam (iv) the load’s 
length and (v) the elastic foundation modulus, on the dynamic behaviour of the non-uniform beam resting on the 
variable one-parameter foundation. Numerical examples which showed that the above parameters have 
significant effects on the dynamic behaviour of the moving load problem are presented. 
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1. Introduction 
 
 It is well known that static loads (forces) are functions of the spatial variables only, while dynamic 
loads are functions of time as well as the spatial variables. However, dynamic loads which are, in addition, 
continuously changing their positions are known as moving loads. Examples include trains, cars, trucks, 
cranes, and pedestrians walking or running across bridges. Moving loads usually cause elastic structures, 
such as beams, on which they act to vibrate intensively particularly when high velocities are involved. The 
problem of accessing the response of elastic structures to moving loads known as the moving load problem, 
is of technological importance. For instance, elastic structures are commonly used in the design of aircrafts 
which are under the influence of various types of moving pressure loads during flight (Chonany, 1984). 
Hence, the problem of analysing the dynamic response of elastic structures under the action of moving loads 
continues to motivate a variety of investigations (Stokes, 1883). Such investigations are found in civil, 
mechanical, transport, astronautical and marine engineering as well as, applied mathematics, since moving 
loads are present in all these fields (Fryba, 1973). Significant early contributions towards solving various 
types of moving loads problems were made by Wills (1849), Stokes (1883), Zimmermann (1896), Krylov 
(1971), Timoshenko et al. (1974), Lowan (1935), Bolotin (1961), Inglis (1934), Hillerborg (1951) and 
Kolousek (1974). Later an extended review on this subject was carried out by Fryba (1973) in his excellent 
monograph. The dynamic response of a simply supported beam traversed by a concentrated moving load was 
determined by Stanisic and Hardin (1968). They developed an interesting technique which, however, cannot 
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easily be applied to various boundary conditions which are of practical interest. Akin and Mofid (1989) 
presented an analytic-numerical method that can be used to determine the dynamic behaviour of beams 
carrying a concentrated moving mass. The problem of dynamic behaviour of an elastic beam subjected to a 
moving concentrated mass was also studied by Sadiku and Leipholz (1995). Gbadeyan and Oni (1995) 
presented a more versatile technique which can be used to determine the dynamic behaviour of beams having 
arbitrary end supports. Michaltos et al. (1996) studied the effect of the mass of a moving load on the 
dynamic response of a simply supported beam. A detailed analysis of the effect of centripetal and Coriolis 
forces on the dynamic response of light (steel) bridges under moving loads was also carried out by Michaltos 
and Kounadis (2001). It is remarked at this junctures, that the elastic parameters of the beams in all the work 
discussed hitherto, are assumed constants. In other words, uniform beams were considered. The reason for 
this is not far fetched since by making such an assumption, the various researchers ended up with the 
governing partial differential equations having constant coefficients only and thereby based the 
aforementioned investigations, in general, on analytical approaches. Otherwise, the researchers could have 
found it very difficult, if not impossible, to obtain analytical closed form solutions to the problems. However, 
practical structures for which the elastic properties are functions of spatial coordinates abound. Hence in this 
paper, beams that are not uniform are considered. 
 Some of the previous works involving non-uniform beams include that of Wu and Dai (1987). They 
studied the dynamic responses of multi-span non-uniform beams under moving loads using the transfer 
matrix method. Dugush and Eisenberger (2002) also investigated the dynamic behaviour of multi-span non-
uniform beams traversed by a moving load at constant and variable velocities. They used both modal 
analysis and direct methods. The analysis of a variable cross-section beam subjected to a moving 
concentrated force and mass is investigated in Ahmadian et al. (2006) using the finite element method. 
 Although, the above completed works on both uniform and non-uniform beams are impressive, only 
concentrated moving loads were considered. However, such loads do not represent the physical reality of the 
problem formulation. As a matter of fact, concentrated loads do not exist physically. For practical 
applications, it is realistic to consider the moving loads as distributed moving loads as opposed to 
concentrated moving loads. Hence, the present paper deals with the more realistic moving load, namely, a 
uniform partially distributed moving load. The first work on moving loads, to the best knowledge of the 
authors, to consider distributed moving loads was that of Esmailzadeh and Ghorashi (1995). The work in 
Esmailzadeh and Ghorashi (1995) was extended by the same authors (Esmailzadeh and Ghorashi, 1997) to 
include the vibration of a Timoshenko beam. In Gbadeyan et al. (2002), the vibration analysis of beams 
traversed by distributed moving masses was studied. Dada (2003) investigated the transverse vibration of 
beams on an elastic foundation subjected to distributed moving masses. Gbadeyan and Dada (2007) also 
studied, recently, the effect of a linearly varying distributed moving load on beams. Most recently, Akpobi 
and Nkenwokeneme (2009) attempted to carry out the analysis of the transverse vibration of beams under a 
moving load using the finite element eigenvector method. However, both the analysis and the illustrative 
example discussed do not involve a moving load. In other words, unlike Dada’s work (2003) their work has 
nothing to do with mobile distributed masses. The problem of determining the dynamic behaviour of visco-
elastically connected beams under a moving distributed load was studied in Gbadeyan and Dada (2007). We 
also remark, at this juncture, that only uniform beams were considered in all these previous works involving 
distributed moving loads. 
 In the context discussed so far, this paper, therefore, focuses on determining the dynamic behaviour 
of a non-uniform Euler-Bernoulli beam resting continuously on a variable Winkler foundation and traversed 
by a uniform partially distributed moving load. Specifically, the elastic properties of the beam such as the 
flexural rigidity, the mass density per unit length of the beam, as well as, the elastic foundation modulus 
parameter which are usually assumed constants are hereby expressed as functions of the spatial variables. 
The dynamic responses of the non-uniform beams subjected to uniformly distributed moving loads were then 
analysed using the finite element technique. Firstly, the non-uniform continuous beam was replaced by a 
non-continuous (discrete) system made up of beam elements. The modified elemental and overall stiffness 
and mass matrices, the elemental and overall centripetal acceleration matrices as well as the elemental and 
overall load vectors were then derived. Next, Newmark’s integration method was used to obtain the desired 
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response of the non-uniform beam with elastic foundation. The key points of interest in this paper were to 
evaluate the effect of the following parameters: (i) the speed of the moving load; (ii) different boundary 
conditions of the vibrating beams; (iii) the span length of the beam; (iv) the load’s length and; (v) the elastic 
modulus of the foundation, on the dynamic behaviour of the non-uniform beam with foundation. The effects 
of shear deformation, rotatory inertia and damping are assumed negligible. 

 
2. Further assumptions and the initial boundary-value problem 

 
The dynamic behaviour of simply supported non-uniform elastic beam resting on a variable Winkler 

foundation and traversed by a uniform partially distributed moving mass is governed by an initial boundary 
value system of equations. This system of equations is made up of, firstly, the following fourth order partial 
differential equation 
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where the flexural rigidity, )(xEI , of the beam and the cross section area, )(xA , of the beam are assumed 
not constant but varying with respect to the spatial coordinates x as follows (Dogush and Eisenberger, 2002; 
Abiala, 2008) 
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respectively, ),( txV  is the transverse deflection of the beam,  the constant density per unit length of the 

beam, t the time, ),( txQ  is the externally applied moving load. ),( txFR  is the foundation reaction 

(pressure) and )(xH  the Heavyside function. 
 It is assumed that the foundation material covers the whole length of the beam and that there are no 
shearing forces at the contacting surface. The implication of this is that the (radiation) foundation damping is 
negligible and the foundation reaction is related to the transverse deflection ),( txV  as follows [28,29]: 
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where the foundation stiffness function )(xK , is defined as  
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   ( ) 2 3K x k 4x 3x x   ,     (2.5) 

 
while K is the foundation modulus parameter, mf is the mass of the foundation and k is an arbitrary constant. 
It is furthermore assumed that the load moves at a constant velocity  lu , keeps contact with the beam 

continually before arriving at the other end support and it is uniform partially distributed. Hence, taking also 
into cognizance both the gravitational and inertial forces of the load, the externally applied moving load 

),( txQ  is defined as  
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 (2.6)  

     
where lm  is the mass of the moving load, g is the acceleration due to gravity,   is the load’s length and   is 
the distance covered by the moving load. 
 For the simply supported non uniform beam of the span l , the boundary conditions may be 
described mathematically as follows 
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   (2.7) 
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 On the other hand, the boundary conditions for an elastic non- uniform beam clamped at both ends 
are given as  
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   (2.8) 
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 The non- uniform beam is considered to be initially at rest, hence, the corresponding initial 
conditions are  
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 Equation (2.1) with Eqs (2.2), (2.6), (2.7) or (2.8)) and (2.9) constitute the initial -  boundary- value 
problem. The closed – form solutions of the problem is either impossible or very difficult to obtain using an 
analytical approach, hence in what follows we employ the finite element method. 
 
3. The finite element formulation of the moving load problem 
 
 The finite element technique assumes that the unknown transverse deflection of the non-uniform 
beam, ),( txV , can be represented approximately by a set of piecewise continuous functions which are 
defined over a finite number of sub-regions called elements and composed of the numerical values of the 



Finite element dynamic analysis of non-uniform beams … 697 

unknown deflection within the region. Thus the first step, involved in the technique, consists of dividing the 
spatial solution domain of the non – uniform beam, which happens to be the length of the beam in this case, 
into a number of sub domains known as finite elements. These elements are joined to each other at selected 
points called nodes. 
 Next, the weak or variational form of the governing Eq.(2.1) is constructed as follows: 
Consider a typical element of length l  so that its domain e  is such that ),( loe  . Substituting, Eqs 

(2.4) and (2.6) into (2.1) we have  
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 Let )(xG  be Galerkin’s weight or test function. Multiplying Eq.(3.1) by )(xG  and integrating over 

the domain e , we obtain 
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 Integrating twice the first term on the left hand side of Eq.(3.1) by parts, rearranging and using the 
prescribed boundary conditions (say, Eq.(2.7)), we obtain 
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where     ( )
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 It is remarked that Eq.(3.3) consists of the boundary terms. They are essentially four terms, two at 
each of the end nodes of the element. As a matter of fact, there exist two natural boundary conditions (viz:   

and  ) being specified at one of the end nodes and two essential boundary conditions (viz, ),( txV  and 
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 In view of Eqs (3.4), Eq.(3.3) becomes 
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 However, it can be easily shown that (Dada, 2003)   
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 Equation (3.7) is the desired weak or variational form of the moving load problem involving the non-
uniform beam resting on  variable one-parameter foundation. 
 Having constructed the weak form of the moving load problem we next seek an approximate solution 
over the element under consideration and thereby construct the corresponding shape functions. To this end , 
it is assumed that the unknown deflection ),( txV  could be expressed approximately as  
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where ( ), , , ,kH x k 1 2 3 4  are called Hermite cubic shape functions, ( ), , , ,kV t k 1 2 3 4  are the modal 

deflection functions and H  is the row vector      
 
   [ ] ( ), ( ), ( ), ( )1 2 3 4H H x H x H x H x .                                               (3.9) 

 
The three procedures involved in constructing the four shape functions are explained in detail in 

Abiala (2008). For brevity, it suffices to state that they are of the form 
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where h is the spatial coordinate. 
 Now substituting Eq.(3.9) into the weak form Eq.(3.7) and replacing the weight function )(xG  
therein by the shape function, we obtain 
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where (“) denotes second derivatives with respect to x, Eq.(3.10) becomes 
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 Equation (3.12) implies 
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 Also, each of Eqs (3.16a) – (3.16c) implies 
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and 
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 At this juncture, it should be noted that Eqs (3.13), (3.17a), (3.17b) and (3.17c) can be written as 
matrix form as follows 
 

  

( ) ( )

( ) (

( )

( )

e e e e e e e e
11 12 13 14 11 12 13 141 1
e e e e e e e e
21 22 23 24 2 21 22 23 24 2

e e e e e e e e
331 32 33 34 31 32 33 34

e e e e e e e e4
41 42 43 44 41 42 43 44

k k k k M M M MV t V t

k k k k V t M M M M V t

V tk k k k M M M M
V tk k k k M M M M

                 
    
        

)

( )

( )
3

4

V t

V t

 
 
 
 
 
  

  

  

( )

( )

( )

( )

e e e e e e
11 12 13 14 1 11
e e e e e e
21 22 23 24 2 2 2

e e e e e e
331 32 33 34 3 3

e e e e e e4
41 42 43 44 4 4

k k k k f QV t 0

k k k k V t f Q 0

V t 0k k k k f Q
V t 0k k k k f Q

                                  
        
                

, (3.19)  

or 
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 Equation (3.19) or (3.20) is the desired non-uniform finite element matrix equation for a typical 
element. In other words, the matrix equation is the governing equation describing the behavior of a typical 

finite element of the non-uniform beam traversed by a uniform partially distributed moving load. ][ eK  is the 

element stiffness matrix, ][ eM  is the element mass matrix, ][ eC  is the element centripetal matrix, ][ ef  is 

the element force vector and ][ eQ  is the element boundary term vector.   
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 For the sake of completeness, we state that the exact expressions for the various entries (sixteen of 
them) of the element stiffness matrix, for instance, can be obtained by substituting Eqs (2.2), (2.3), (2.5), 
(3.10) into Eqs (3.12), (3.16) and (3.17). These exact expressions  are given in Appendix I. The exact 
expressions of the entries of the other element matrices and vectors can be similarly obtained. 
 The next step is assembling of the element equations. The procedure for assembling various 
corresponding matrices and vectors for several beam elements which constitute a mesh is well discussed in 
[a text]. For brevity, it suffices in this paper to state that for more than two elements, (say z elements), the 
assembled stiffness matrix, for instance, the corresponding assembled (overall) mass and centripetal matrices 
are of the same structure. The procedure also holds for the assembled load vectors. Hence the governing 
equation of motion describing the dynamic behaviour of the moving load problem with foundation is 
 

  }{)}(]{[)}(]{[)}(]{[ FtVMtVCtVK     (3.21) 
 
where ][K , ][M , ][C  and ][F  are the assembled (global or overall) stiffness, mass and centripetal 
matrices and load vector.  
 In order to obtain a complete and unique – solution of Eq.(3.21) the prescribed boundary conditions 
must be imposed on both the deflections/slopes and the shear force/bending moments, respectively. 
 Finally, for a harmonic free vibration system without the centripetal matrix, Eq.(3.21) reduces to 
 

      { ( )}2K M V t 0   (3.22)  

 

where 2  denotes the natural frequency and )(tV  is the corresponding mode shape of the system. Various 

methods can be used to find the eigenvalue 2  and the corresponding eigenvector )}({ tV  (Kwon and Bang, 
196). The dynamic responses of the non-uniform beam under a uniform partially distributed moving load are 
obtained by solving the equation of motion Eq.(3.21) directly by the Newmark method (Abiala, 2008) and 
(Newmark, 1959). 
 
4. Numerical results for a moving load problem on a Winkler foundation and discussion 

 
 In this section, a simply supported structural beam (see Fig.1a) resting on a Winkler foundation is, 
first, used to illustrate the procedure discussed hitherto. The total length of the beam is L=10m, the mass 
density per beam’s length = 7.04gm3, the beam cross-sectional area A=20m2, the load’s length    = 0.5m 
and the foundation elastic modulus k = 500. 
 

 
 

Fig.1a. A non-uniform beam on variable one- parameter foundation. 
 

vt

 

10m 

k 
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Fig.1b. A discretized non- uniform beam on variable one-parameter foundation. 
 

 The beam is replaced by a discrete system composed of six non-uniform elements (Fig.1b) such that 
the length of each element is given as L1 = 1m, L2 = 1.4m, L3 = 1.5m, L4 = 1.6m, L5 = 2m, L6 = 2.5m, and 
the flexural rigidities are EI1= 2.7728x105Nm, EI2=3.9947x105Nm, EI3=8.2858x105Nm, EI4=2.6179x106Nm, 
EI5=6.3936x106Nm, EI6=9.393x106Nm, while A1=2.0m2, A2=2.8m2, A3=3m2, A4=3.2m2, A5=4m2 and 
A6=5m2. In the analysis, the responses at various values of the foundation modulli are obtained, while effort 
is made to extend the study to a cantilever beam. The following observations were made: 
(i) Effect of foundation: In order to study the effect of the foundation on the dynamic response of a non-

uniform simply supported beam under a uniform partially distributed moving load and resting on a 
Winkler foundation, four values of the foundation parameter k were used, viz k=0, 500, 1400, and 2000, 
respectively. It was observed from Fig.2 that the amplitude of the deflection increases with an increase 
in the foundation parameter k. In particular, it is found that the amplitude of the deflection of the system 
without foundation is lower than that involving the foundation. 
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Fig.2.  Effects of increase in foundation on the dynamic response of a non-uniform simply supported bean 

with Winkler foundation under distributed moving loads. 
 
(ii) Effect of velocity: To investigate the influence of the velocity of the load on the dynamic response of 

the non-uniform simply supported beam under uniform partially distributed moving load, the following 
various values of the velocity, viz V0 =3m/s, 3.5m/s and 4m/s were used while k=500. It is observed that 
as the velocity increases, the amplitude of deflection also increases, (Fig.3), but after attaining the 

critical value of the velocity 1
0V , it is found that as the velocity increases, the amplitude of deflection 

decreases (see Fig.4). It is also noted that the critical value of the velocity is smaller than that when 
there was no foundation. This critical value of the velocity is found to be 4.5m/s. 

 
 
 

1m 1.4m 1.5m 1.6m 2m 2.5m 
k1 k2 k3 k4 k5 k6 
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Fig.3.  Effects of increase in velocity on the dynamic response of a non-uniform simply supported bean with 

Winkler foundation under distributed moving loads. 
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Fig.4.  Effects of exceeding the critical value of the velocity on the dynamic response of a non-uniform 

simply supported bean with Winkler foundation under distributed moving loads. 
 
(iii) Effect of the length of the load: Next, the effect of the length of the load    on the dynamic response 

of a simply supported non-uniform beam supported by an elastic foundation is investigated. For this 
purpose, the following values of the load’s length ε = 0.5, 0.7 and 0.9 were considered. It is observed 
that as the load’s length increases, the amplitude of the deflection decreases (see Fig.5). This is in 
contradiction with the situation involving no foundation. 
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Fig.5.  Effects of increase in load’s length on the dynamic response of a non-uniform simply supported bean 

with Winkler foundation under distributed moving loads. 
 
(iv) Effect of length of the beam element: The following three different span-lengths of the beam, L = 

10m, 16m and 22m were considered for the purpose of studying the influences of the beam’s length 
on the dynamic response of simply supported non-uniform beam resting on a variable Winkler 
foundation. It can be seen from Fig.6 that as the span-length of the beam increases, the amplitude of 
the deflection decreases. This is contrary to the case when the beam is not resting on an elastic 
foundation. 
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Fig.6.  Effects of increase in the length of the beam on the dynamic response of a non-uniform simply 

supported bean with Winkler foundation under distributed moving loads. 
 
(v) Effect of changes in boundary conditions: If the associated boundary conditions are changed from 

being simply supported to that of being fixed-free, it is found that the behavioural pattern of the 
responses is in the opposite direction. In particular, it is found that unlike the simply supported 
conditions, the response amplitude of the non uniform beam decreases as the velocity increases (see 
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Fig.7), for Vo > Vo (see Fig.8). In fact, the critical value of the velocity in this case is about 6m/s, which 
is higher than that when the beam is simply supported. Furthermore, for a cantilever beam, the response 
amplitude decreases with an increase in the foundation parameter K(see Fig.9), which contradicts the 
prevailing situation for a simply supported beam. However, just like the simply supported beam, the 
response amplitude decreases as the load’s length increases(see Fig.10), while the responses if the 
beam’s length is increased behave in the same manner as when the beam is simply supported (see 
Fig.11). 
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Fig.7. Effects of increase in velocity on the dynamic response of cantilever beam with Winkler foundation 

under distributed moving loads. 
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Fig.8. Effects of exceeding the critical value of velocity on the dynamic response of cantilever beam with 

Winkler foundation under distributed moving loads. 
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Fig.9. Effects of increase in foundation on the dynamic response of cantilever beam with Winkler 
foundation under distributed moving loads. 
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Fig.10. Effects of increase in load’s length on the dynamic response of cantilever beam with Winkler 
foundation under distributed moving loads. 
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Fig.11. Effects of increase in span-length of the beam on the dynamic response of cantilever beam with 
Winkler foundation under distributed moving loads. 
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5. Conclusions 
 

 Vibration analysis of a non-uniform beam subjected to a uniform partially distributed moving load and 
resting on a variable Winkler foundation using the finite element method has been developed in this paper. The 
overall finite element equations were solved employing Newmark’s numerical integration technique with the 
aid of Computer codes written in Visual Basic. The influence of the speed of the moving load, the boundary 
conditions of the beam, the span length of the beam, the load’s length and the elastic modulus of the foundation 
are obtained. Both simply supported and cantilever non-uniform beams are considered.  

 On the basis of the configurations of vibration chosen, one may draw the following conclusions: 
a) The maximum amplitude of the deflection of a simply supported non-uniform beam resting on a non-

uniform Winkler foundation and traversed by a uniform partially distributed moving load, increases as 
the foundation parameter increases. 

b) An increase in the span length of a non-uniform, simply supported or cantilever beam continuously 
supported by a non-uniform Winkler foundation under a uniform partially distributed moving load, 
yields a decrease in the maximum amplitude of the deflection of the beam. 

c) For a non-uniform cantilever beam resting on a non-uniform Winkler foundation under a uniform partially 
distributed moving load, and for speeds of the moving load which are less than the critical speed, the 
maximum amplitude decreases as the speed increases and reverses for speeds greater than the critical speed. 
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
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Nomenclature 
 
 ( )A x  – cross section area of the beam 
 EI  – flexural rigidity of the beam 
 ( , )FR x t  – foundation reaction (pressure) 
 ( )G x  – weight function  
 g  – acceleration due to gravity  
 ( )H x  – Heavyside function 
 ( )KH x  – Hermite cubic shape functions 

 K  – foundation modulus parameter 
 k  – an arbitrary constant 

 el  – typical length of the beam element 
 fm  – mass of the foundation  

 Lm  – mass of the moving load 

 ( , )Q x t  – externally applied moving load 
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 t  – time 
 lu  – constant velocity of the moving load 

 ( , )V x t  – transverse deflection of the beam 
 ( )KV t  – modal deflection function  

 x  – spatial variable 
   – load’s length and 
   – distance covered by the moving load 
   – constant density per unit length of the beam 
   – shear force 
   – bending moment 
 e  – element domain 
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