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An analysis has been provided to determine the transient velocity and steady state entropy generation in a 
microfluidic Couette flow influenced by electro-kinetic effect of charged nanoparticles. The equation for 
calculating the Couette flow velocity profile is derived for transient flow. The solutions for momentum and 
energy equations are used to get the exact solution for the dimensionless velocity ratio and dimensionless entropy 
generation number. The effects of the dimensionless entropy generation number, Bejan number, irreversibility 
ratio, entropy generation due to fluid friction and due to heat transfer on dimensionless time, relative channel 
height, Brinkman number, dimensionless temperature ratio, nanoparticle volume fraction are analyzed.  
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1. Introduction 
 
 In recent years, microfluidics or micro-fluid mechanics have become an attractive area of research. 
The importance of microfluidics arises from the new applications of micro-scale electromechanical systems 
(MEMS) that encounter mass and heat transfer, such as micro-pumps, micro-turbines and micro-
refrigerators. Extensive experimental and theoretical studies were made in this area in order to understand 
the fluid behavior within this micro devices. Reynolds numbers in microfluidic systems are usually small, 
i.e., usually below 0.1. Microfluidics deals with the science and technology of fluid flows over micron or 
sub-micron length scales. In addition, due to the small scales of the channels, the surface-to-volume ratio is 
high causing surface effects such as wettability or surface charges to be more important than in macroscopic 
systems. 
 Nanofluids, a new class of nano-engineered liquid solutions of colloidal particles with a diameter of 
1–100 nm, have shown a great energy savings potential and attractive properties for applications such as 
energy, bio and pharmaceutical industry, and chemical, electronic, environmental, material, medical and 
thermal engineering, among others. Based on these applications (Choi et al., 2011) theoretically studied the 
behavior of a microfluidic Couette flow of nanofluids composed of negatively-charged nanoparticles 
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dispersed in aqueous NaCl solutions. They derived the equation for calculating the Couette flow velocity 
profiles and also calculated the induced electric field and velocity profiles as a function of key parameters 
including nanoparticle size and volume fraction. They showed that nanofluids consisting of negatively 
charged nanoparticles suspended in aqueous NaCl solutions show significantly different velocity profiles 
compared to aqueous NaCl solutions containing no nanoparticles. Viscoelastic flow around a confined 
cylinder at high Deborah numbers is studied using microfluidic channels by Kenney et al. (2013). This study 
was concentrated on new flow instabilities for large Deborah number flows that occur both downstream and 
upstream of the cylinder and also on the role of inertia and elasticity in the flow. Omowunmi and Yuan 
(2013) performed a numerical study on the role of elongational viscosity in time-dependent non-linear 
dynamics of polymer solutions in micro-fluidic contraction flow. By extending the work of Groisman and 
Steinberg (1998) to microfluidic channels, Pathak et al. (2004) conducted flow visualization to study the 
mechanism underlying a purely elastic flow instability for a Poiseuille flow in a micro channel having a 
zigzag path (curved streamlines) and quantitatively investigated its implications for fluid mixing (studied by 
fluorescence microscopy) in a micro channel. Soong and Wang (2003) investigated the electro-kinetic effects 
on liquid flow and heat transfer in a flat micro channel of two parallel plates under asymmetric boundary 
conditions including wall-sliding motion, unequal zeta potentials, and unequal heat flux on two walls. Zahid 
et al. (2007) studied a Couette–Poiseuille flow of a gas in long micro channels. 
 In order to improve the performance of micro-fluid mechanics in energy utilization, recently the 
entropy generation analysis methodology which is based on the second-law of thermodynamics, has been 
effectively used. The open literature shows a very small number of papers that deal with entropy generation 
related problems in the field of microfluidics. Ejtehadi et al. (2012) numerically analyzed compressibility 
and rarefaction effects on entropy generation in a micro/nano Couette flow using the direct simulation Monte 
Carlo (DSMC) method. Under more general conditions Ibanez and Cuevas (2010) analyzed, the thermal 
behavior of viscous fluid flow in a parallel wall microchannel subjected to electromagnetic interaction. 
Further, they also explored the influence of these conditions on the entropy generation rate in the 
microdevice and determined conditions under which this quantity is minimized. Haddad et al. (2004) 
numerically investigated the entropy generation due to steady laminar forced convection fluid flow through 
parallel plate’s microchannel and discussed the effect of Knudsen, Reynolds, Prandtl, Eckert numbers and 
the nondimensional temperature difference on entropy generation within the microchannel. With the aid of 
the lattice Boltzmann method, Chen and Tian (2010) studied the characteristics of entropy generation due to 
heat transfer and friction in transient state as well as in steady state for thermal micro-Couette flows in slip 
regime. Chen (2005) carried out an analytical investigation on entropy generation and transfer in 
microchannel flow by considering different boundary conditions and for an arbitrary channel shape. 
Recently, Abbassi (2007) used an analytical approach to solve forced convection problem across heated 
microchannel heat sink (MCHS), in a porous medium model based on extended Darcy equation for fluid 
flow and two-equation model for heat transfer. They proved that there is an optimized value for porosity at 
which the entropy generation rate reaches its minimum magnitude. 
 Based on the above studies the objective of the present study is to discuss the transient velocity and 
steady state entropy generation in a microfluidic Couette flow containing charged nanoparticles. The effects 
of the dimensionless entropy generation number, Bejan number, irreversibility ratio, entropy generation due 
to fluid friction, entropy generation due to heat transfer on dimensionless time, relative channel height, 
Brinkman number, dimensionless temperature ratio, nanoparticle volume fraction are studied. 
 
2. Mathematical formulation and solution analysis 
 
 Consider a steady, laminar flow of an incompressible fluid between two parallel plates of a 
microchannel of width 2h as shown in Fig.1a. The Couette flow is due to the movement of the upper plate 
with uniform velocity (U) along the x-axis, while the lower plate is stationary. Figure 1 shows the EDL at the 
solid-liquid interface. 
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Fig.1. Schematic diagram of the flow. 
 

 We have made the following assumptions to study the Couette flow velocity profile. 
1. The flow is one dimensional i.e.,   ( )u u y .  

2. Nanoparticles are mono disperse, rigid spheres with radius pr  it ranges between 3–50 nm, and 

homogeneously distributed in the solution.  
3. Interaction between charged nanoparticles in the suspension is negligible because the concentration of 

nanoparticles is less than 0.4 vol.%. 
 The equation governing one-dimensional flow in the presence of body force induced by the flow of 
charged nanoparticles in a nanofluid is given as follows 
 

    cosh
 

cosh

2
2

w x2

u u ky
k E

t khy

            
.        (2.1) 

 
 Initial and boundary conditions for the present formulation are 
 

   ,  u 0 y 0 , 

   (2.2) 
  ( , )u t h U ,          ,  .u t h 0     

 
 To find the solution of the governing problem here we have implemented the variable separable 
method. So let  
 

  ( , )  ( ) ( , )s tu t y u y u t y  .        (2.3) 
 
 By substituting Eq.(2.3) in Eqs (2.1) and (2.2) one can get the equation for the velocity as  
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cosh( )

2 2
2t t s w

w x2 2
w

u u u k y
k E

t k hy y

   
           

.  (2.4)  

 
 The boundary conditions are 
 
     u h 0  ,        ( )u h U .          (2.5) 

 
 By solving Eq.(2.4) along with the boundary conditions (2.5) we get the solution for steady state 
velocity su  as 
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 Again using Eq.(2.3) in Eq.(2.1) we get the equation for transient velocity ( , )tu t y  as;  
 

   
2

t t
2

u u

t y

 
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 

.         (2.7)  

 
 Corresponding initial and boundary conditions will become 
 
   ,  ( )t su 0 y u y , 

   (2.8)   
   ,  tu t h 0  ,          ( , ) .tu t h 0       

 
 The transformation Y y h   will reduce Eq.(2.7) and initial and boundary conditions (2.8) into the 
following form 
 

   
2

t t
2

u u

t Y

 
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 

.      (2.9) 

 
 Initial and boundary conditions defined as in Eq.(2.8) will become 
 
   ,  ( )t su 0 Y u Y     (Initial condition)      (2.10) 

 
   ,  tu t 0 0 ,              ( , )tu t 2h 0    (boundary conditions)      (2.11) 

 
 Using separation of variables method and orthogonal property, the solution of Eq.(2.9) along with 
initial and boundary conditions as in Eqs (2.10) and (2.11) we get, 
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the solution for the transient velocity will become 
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 For the sake of convenience and for rapid convergence of the series we have considered the 
following first six terms of the series, 
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3. Steady state analysis for heat transfer and entropy generation 
 
 Once the velocity distributions are known, the temperature distributions for the two regions are 
determined by solving the steady state heat transfer energy equation with appropriate boundary conditions. In 
the present problem, it is assumed that the two walls are maintained at constant temperatures 1T  and 2T . The 
governing equation for the steady state heat transfer is given by 
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c ydy
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 With the aid of transformation Y y h   the above equation will become 
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where Pr





 the Prandtl number. 
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 The appropriate boundary conditions are considered as 
 

  1T T        at        ,Y 0   
   (3.2) 
  2T T        at         .Y 2h    
 

 Define the similarity transformations as 
 

  ,  s 1

2 1

u T T
ū

U T T


  


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 Therefore, using these transformations in Eq.(3.1) one can get 
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


 is the Eckert number and cPrE =Br  is the Brinkman number. 

 Corresponding boundary conditions are 
 

  0          at       ,Y 0   
   (3.5) 
  1           at       .Y 2h   
 
4. Second law analysis 
 
 According to Bejan (1996), the rate of entropy generation that arises due to heat transfer and fluid 
friction losses can be derived as 
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where 0T  is the absolute reference temperature. 

 Define similarity variable as 
Y

2h
  . Using this variable and Eqs (3.3) one can obtain the 

dimensionless entropy generation equation as 
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 In Eq.(4.1)  
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 The irreversibility ratio is defined as the ratio of entropy generation due to fluid friction to the 
entropy due to heat transfer, so is given by 
 

  .F

H

N

N
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 The Bejan number is defined as the ratio of entropy generation due to heat transfer to the total 
entropy generation. 
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 Solving Eq.(3.4) one can get  
 

  

   
   

 
 

   

 
 

 
   

 

cos sinh
Br

coshcos

costanh

Br Br cos

2 2 222 w w wE x E x
2 2

w ww

2 2 22
w wwE x E x

2 2
w w

2 h k y 1 2k y k yE Ey
y

U U k h k h8h 8 h k h

2 h k h 1 2k hk hE E1 1 1
y

2 h U 2 8 Uk h 8 h k h

                         
                              

,


 
 
 

  

   

  

 
       

 

 
     

 

wk sinh cosh
Br

cos

cosh tanh

cosh Br
,

22 2
w w wE x

2 2
w

2

w wE x E x
H2

w w

4 k y k y 4k yEy

y U4h 8 h k h

k y k hE E1
N

U h k h 2 h U k h

                           

            
     

  

   

  
     

 
sinhBr Br

*
cosh

22
wE x

w F
w

k yEū 1
k N

y 2h U k h

                       
. 

 
5. Results and discussion 
 
 The velocity distribution tu  and su  and the temperature distributions are obtained analytically from 
the momentum equation and energy equation using separation of variable method. The effects of the 
dimensionless entropy generation number, Bejan number, irreversibility ratio, entropy generation due to fluid 
friction, entropy generation due to heat transfer on dimensionless time, relative channel height, Brinkman 
number, dimensionless temperature ratio, nanoparticle volume fraction are presented. 
 Figure 2 shows the steady state velocity distribution for various values of volume fraction of nanoparticle. 
We can observe that the steady state velocity increases for increasing values of nanoparticle volume fraction. 
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Fig.2. Steady state velocity profiles for increasing values of nanoparticle volume fraction with   pr 5nm . 
 

 Figures 3, 4 and 5depict the transient velocity (absolute) distribution at various points in the flow for 
different values of nanoparticle volume fraction. From these figures, it is observed that as the value of τ 
(dimensionless time) increases, the transient velocity decreases i.e., the flow approaches steady state. Further 
one can see that the transient velocity is maximum inbetween /   y h 0  and /   .y h 0 5 . 
 

 

Fig.3. Transient velocity profiles for increasing values of dimensionless time in 
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Fig.4. Transient velocity profiles for increasing values of dimensionless time in 
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Fig.5. Transient velocity profiles for increasing values of dimensionless time in 
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 
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*νt
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 Figures 6, 7, 8, 9 and 10 are plotted for constant values of nanoparticle volume fraction and Ω for 
various values of the Brinkman number to analyze its effect on entropy due to heat transfer, entropy due to fluid 
friction, irreversibility ratio and Bejan number. It can be seen from these plots that as the Brinkman number 
increases, entropy due to heat transfer, entropy due to fluid friction and total entropy increase but an opposite 
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phenomenon can be found as the width of the channel increases. For the irreversibility ratio, as Br increases Φ  
also increases and it attains the highest value at /   y h 1 . For some larger values of Br the Bejan number 
decreases with an increase in distance and also the distribution is relatively flat for smaller values of the 
Brinkman number. 
 

 
 

Fig.6. Entropy due to heat transfer profiles for increasing values of the Brinkman number. 
 

 
 

Fig.7. Entropy due to fluid friction profiles for increasing values of the Brinkman number. 
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Fig.8.Total entropy generation  s H FN N N  for increasing values of the Brinkman number. 
 

 
 

Fig.9. Irreversibility ratio profiles for increasing values of the Brinkman number. 
 



798  R.S.R.Gorla and B.J.Gireesha 

 
 

Fig.10. Variation of the Bejan number for increasing values of the Brinkman number. 
 
 Figures 11, 12, 13, 14 and 15 are drawn for a constant Brinkman number and Ω with different values of 
nanoparticle volume fraction. As the values of nanoparticle volume fraction increase, entropy due to heat transfer, 
entropy due to fluid friction and total entropy also increase but it decreases with distance. As nanoparticle volume 
fraction increases the irreversibility Φ  decreases with distance and for higher nanoparticle volume fraction, the 
distributions become more parabolic with the lowest value occurring at the lower plate. As vf  increases the Bejan 

number increases and it becomes more parabolic with the highest value occurring at /   y h 0 . 
 

 
 

Fig.11. Entropy due to heat transfer profiles for increasing values of nanoparticle volume fraction. 
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Fig.12. Entropy due to fluid friction profiles for increasing values of nanoparticle volume fraction. 
 

 
 

Fig.13. Total entropy generation for increasing values of nanoparticle volume fraction. 
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Fig.14. Irreversibility ratio profiles for increasing values of nanoparticle volume fraction. 
 

 
 

Fig.15. Variation of the Bejan number for increasing values of nanoparticle volume fraction. 
 
 Figures 16, 17, 18 and 19 show entropy generation numbers, the Bejan number and irreversibility for 
constant values of nanoparticle volume fraction, Brinkman number by varying Ω for entropy due to heat 
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transfer and entropy due to fluid friction. As Ω increases, both entropy due to heat transfer and entropy due to 
fluid friction decreases. Further the entropy due to heat transfer, and entropy due to fluid friction decreases with 
an increase in distance. Also, one can see that the Bejan number increases with an increase in Ω whereas it 
decreases with distance. Final observation shows that ф decreases, as Ω increases and it increases with distance. 
 

 
 

Fig.16. Entropy due to fluid friction profiles for increasing values of Ω.  
 

 
 

Fig.17. Total entropy profiles for increasing values of Ω.  
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Fig.18. Variation of the Bejan number for increasing values of Ω.  
 

 
 

Fig.19. Irreversibility ratio profiles for increasing values of Ω.  
 
6. Concluding remarks 
 
 A fully developed Couette flow with heat transfer is considered under the influence of voltage 
potential gradient along the length of a channel. An analysis for the transient velocity, steady state velocity 
and entropy generated in a parallel plate micro-channel has been made.  
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 The main outcomes of the problem are summarized as follows: 
 The steady state velocity increases for increasing values of nanoparticle volume fraction. 
 The transient velocity decreases as the value of dimensionless time increases and is maximum inbetween 

/   y h 0  and /   .y h 0 5 . 

 The entropy due to heat transfer, entropy due to fluid friction and total entropy increase with the 
Brinkman number, but an opposite phenomenon can be found as the width of the channel increases. The 
same effect can be found with nanoparticle volume fraction.  

 The irreversibility ratio increases as the Brinkman number Br increases and it attains a maximum value at
/   y h 1 . An opposite effect can be seen under the influence of nanoparticle volume fraction. 

 The Bejan number decreases for some larger values of Br and width of the channel and the distribution is 
relatively flat as the Brinkman number becomes smaller.  

 Both entropy due to heat transfer and entropy due to fluid friction decrease with an increase in Ω.  
 The Bejan number increases and Φ  decreases with an increase in Ω. 
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Nomenclature 
 
 Be – Bejan number 
 Br – Brinkman number 
 pc  – specific heat of fluid 

 Ec – Eckert number 
  xE  – electric field 

  vf  – nanoparticle volume fraction 

 h – height of channel from centerline to wall 
 k – thermal conductivity 
  wk  – Debye–Hükel parameter of the wall/liquid 

 FN  – entropy due to fluid friction 

 HN  – entropy due to heat transfer 

 Ns – dimensionless entropy generation 
 Pr – Prandtl number 
 pr  – particle radius size  

 0T  – ambient temperature 

 1T  – temperature of bottom plate 

  2T  – temperature of top plate 

 U – velocity of top plate  
 u – fluid velocity 
 su  – steady state velocity  

 tu  – transient velocity 

 
y

h
  – nondimensionalized y axis 

    – thermal diffusivity 
    – permittivity of liquid 
 w  – Zeta potential at the wall interface 

  w  – Debye length 
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 f  – dynamic viscosity 

    – kinematic viscosity 
    – density of liquid 
  eff  – effective conductivity(electrical) 

 
2

t

h


   – dimensionless time in 

2 2

2
n

t
4he

    
   

 Φ  – irreversibility ratio 
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