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The present investigation deals with the propagation of waves in a micropolar transversely isotropic half 
space with an overlying inviscid fluid layer. Effects of fluid loading and anisotropy on the phase velocity, 
attenuation coefficient, specific loss and relative frequency shift. Finally, a numerical solution was carried out for 
aluminium epoxy material and the computer simulated results for the phase velocity, attenuation coefficient, 
specific loss and relative frequency shift are presented graphically. A particular case for the propagation of 
Rayleigh waves in a micropolar transversely isotropic half-space is deduced and dispersion curves are plotted for 
the same as functions of the wave number. An amplitude of displacements and microrotation together with the 
path of surface particles are also calculated for the propagation of Rayleigh waves in the latter case. 
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1. Introduction 
 

In the classical theory of elasticity the microstructure of a material is not taken into consideration for 
studying the mechanical behavior of the material due to external stimuli. But discrepancies are observed in 
the classical theory and experimental results while studying the stress concentration in the neighborhood of 
holes and cracks, especially in the material containing laminates, granules, fibers. The discrepancy indicates 
that the material response to external stimuli depends on the motions of inner-structures and so the study of a 
micropolar elastic medium is necessary. 

Suhubi and Eringen (1964) developed a non-linear theory of microelastic solids in which the 
micromotions of the material particles contained in a macrovolume element with respect to its centroid are 
taken into account. Materials affected by such micromotions and microdeformations are called micromorphic 
materials. Eringen (1966) developed theories for a subclass of micromorphic materials which are called 
micropolar media and these materials show microrotational effects and microrotational inertia. Here, the 
material particles in a volume element can undergo only rigid rotational motions about their center of mass. 
The motion described here does not only consists of deformation but also of microrotation giving six degrees 
of freedom. The interaction between two parts of a body is transmitted not only by a force but also by a 
torque, resulting in asymmetric force stresses and couple stresses. Physically, solid propellant grains, 
polymeric materials and fiber glass are examples for such materials. The theory is expected to find 
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applications in mechanics of granular materials, composites fibrous materials and particularly microcracks 
and microfractures. 

Eringen’s micropolar theory is more appropriate for geological materials like rocks, soils, etc., since 
this theory takes into account the intrinsic rotation and predicts the behavior of a material with an inner 
structure. Many investigators discussed different types of problems in transversely isotropic elastic materials. 
Abubakar (1962) discussed free vibrations of a transversely isotropic plate. Keck et al. (1971) derived the 
frequency equation for the propagation of train of nontorsional axisymmetric harmonic wave in infinitely 
long shells, made of three concentric cylinders of different transversely isotropic materials. In 1974, 
Shuvalov et al. described the long wavelength onset of the fundamental branches for a free anisotropic plate 
with an arbitrary variation of material properties. Payton in 1991 studied wave propagation in a restricted 
transversely isotropic elastic solid whose slowness surface contains conical points. In spite of these studies, 
no attempt has been made to study wave propagation in a micropolar transversely isotropic medium. 

The aim of the present study is to improve our knowledge about the propagation of Rayleigh waves 
in a micropolar transversely isotropic medium underlying a layer of an inviscid liquid of finite thickness. 
This study has many applications in various fields of science and technology, namely, atomic physics, 
industrial engineering, thermal power plants, submarine structures, pressure vessel, aerospace, chemical 
pipes and metallurgy. After developing the solution, frequency equations connecting the phase velocity with 
the wave number are derived. The curves of phase velocity, attenuation coefficient, specific loss and relative 
frequency shift are presented and illustrated graphically, to indicate the effect of anisotropy and thickness of 
fluid loading. The propagation of Rayleigh waves together with the path of surface particles in a micropolar 
transversely isotropic half-space are also deduced from the present investigation. 
 
2. Basic equations 
        

Following Eringen (1999), the constitutive relations and balance laws in a general micropolar 
anisotropic medium possessing a center of symmetry, in the absence of body forces, body couples, are given 
by 

 
Constitutive relations 
 

ij ijkl kl ijkl klt A E G   ,        

 

ij ijkl kl ijkl klm G E B                                                                               (2.1) 

 
 The deformation and wryness tensor are defined by 
 
  , ,, .ji i j ijkl k ij i jE u      

 
 
Balance laws 
 

  ,ij j it u 
 

 
  ,ik i ijk ij km t j     ,                                                                                (2.2) 

 
where the list of symbols is given in the nomenclature.  
 The basic equation which governs the motion of an inviscid liquid, given by Ewing et al. (1957) is  
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 The stress displacement relation is given by  
 

  ,
o o
ij o r r ijt u  

               (2.4) 
 
where the list of symbols is given in the nomenclature.  
  
3. Problem formulation and solution 
 
 Following Slaughter (2002), appropriate transformations have been used on the set of Eqs (2.1) to 
derive equations for a micropolar transversely isotopic medium and restrict our analysis to a two dimensional 
problem.  
 In the present paper, we consider a layer of an inviscid liquid, of finite thickness H with traction free 
surface at 3x H  , overlying a homogeneous, micropolar transversely isotropic half-space. The origin of 

the coordinate system  , ,1 2 3x x x  is taken at any point of the plane surface (interface) and the 3x -axis points 

vertically downwards into the solid half-space which is thus represented by 3x 0 . We consider the 
propagation of waves in the direction of the x1-axis such that all the particles on a line parallel to the x2-axis 
are equally displaced. Therefore all the parameters become independent of the 2x -coordinate. Further, it is 

assumed that the disturbances are small and are confined to the neighborhood of the interface 3x 0  and 

hence vanish as 3x  . For the two-dimensional problem, we assume the components of the displacement 
and microrotation vector in the inviscid layer and micropolar transversely isotropic half-space of the form 
 

   , ,
3

o o o
1u 0 uu ,         , ,1 3u 0 uu ,           , ,20 0                                             (3.1) 

and assume that the solutions are explicitly independent of 2x ,  i.e., 
2

0
x





. Thus the field equations 

reduce to 
 

  
  ,

22 2 2
31 1 2 1

11 55 13 56 12 2 2
1 3 31 3

uu u u
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x x xx x t

   
     
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                           (3.2) 
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,
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2 2 1 2 1

77 66 1 12 2 2
3 31 3

u u
B B K K

x xx x t

      
    

   
                                              (3.4)    
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                 (3.9) 

 
where 
 
      , , ,1 56 55 2 66 56 2 1K A A K A A X K K       
 
and we have used the notations , , , ,11 1 33 3 12 7 13 6 23 5      for the material constants. 
 For further considerations, it is convenient to introduce the dimensionless variables defined by 
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4. Boundary condition 
 
 The boundary conditions are: 
(i)  The upper boundary of the layer is assumed to be stress free. Therefore, the normal stress vanishes at the 

free surface 3x H  , i.e., 
 

   ,o
33t 0            at           3x H                                    (4.1) 

 
(ii)  Continuity of normal stress at the interface 3x 0  between the liquid layer and the micropolar 

transversely isotropic half-space, i.e.,  
 

   0
33 33t t ,                                                        (4.2) 

 
(iii)  Continuity of normal displacement at the interface 3x 0  between the liquid layer and the micropolar 

transversely isotropic half-space, i.e., 
 

   o
3 3u u  (4.3) 
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(iii)  Vanishing of the tangential stress component at the interface 3x 0  between the liquid layer and the 
micropolar transversely isotropic half-space, i.e., 

 
   31t 0 ,  (4.4) 
 
(iv) Vanishing of the tangential couple stress component at the interface 3x 0  between the liquid layer and 

the micropolar transversely isotropic half-space, i.e., 
 
  32m 0 .  (4.5) 

 
5. Normal mode analysis and solution of the problem 
 
 We assume the solution for , , , ,

1 3

o o
1 3 2u u u u  representing propagating waves in the 1 3x x  plane of 

the form 
 

  
     , , , , 1 3i x mx ct

1 3 2 1 3 2u u u u e      ,               , , 1 3
1 3 3

i x mx cto o o o
3u u u u e              (5.1) 

 
where   is the wave number, c   is the angular frequency and c is the phase velocity of the wave, m is 

the unknown parameter which signifies the penetration depth of the wave, ,3 2u   are respectively, the 

amplitude ratios of the displacement 3u  and microrotation 2  with respect to the displacement 1u . 
 With the help of Eqs (3.10) and (5.1), field Eqs (3.2)-(3.6) reduced to (after suppressing primes)  
 

  
         ,1 3i x mx ct2 2

11 1 2 3 2 2m c d u m d d u i m d 1 e 0                                      

                  

  
         ,1 3i x mx ct2 2 2 2

1 2 1 3 4 3 2 3 2 4 2 1m d d u m d d c u i d 1 d d d u e 0                  
 

  
 
      ,1 3i x mx ct7 3 2 4 2 2 2
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i d d d d
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d d 1
                        

(5.2) 

 

  
1

2
2 o oo 1

3
o

c
1 c u mu 0
 
     

  (5.3) 

 
where     
 

  1 11 55d A A ,      2 56 55d A A ,      3 66 55d A A ,      4 55 33d A A ,      5 77 66d B B ,  
 

  6 55 66d A j B ,   *2 2
7 55 1 66d A c B  ,      8 1 55d K A ,      9 13 55d A A . 

 

 The condition for the non trivial solution of the system of Eqs (5.2) yields a cubic equation in 2m  as 
 

  
6 4 2Am Bm Cm D 0                                                               (5.4) 
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where 
 

       , ,
2 22 2 2 2

3 5 1 1 2 6 4 8 7 2A B d d d c d d d d d d d 1              
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 The roots of this equation give three values of 
2m , and hence of 

2c . Three positive values of c  will 
be the velocities of propagation of three possible waves, viz. the quasi-longitudinal displacement (QLD) 
wave, transverse displacement (QCTD) wave and quasi-coupled quasi-coupled transverse microrotational 
(QCTM) wave. This fact is verified, when we solve Eq.(3.10), using Matlab programming. For the isotropic 
linear micropolar elastic solid, if we put, i.e. 
 

  ,11 33A A 2 K                ,55 66A A K             ,13A   ,56A    
 
  / ,1 2K K K X 2               66 77B B    
 
in Eq.(5.4), the velocity 1c  corresponds to the longitudinal displacement wave and the velocities 2c  and 3c  
correspond to two coupled waves, viz. the transverse microrotational and  transverse displacement wave as 
obtained by Parfitt and Eringen (1969). 
 So Eq.(3.10) leads to the following solution for displacements and microrotation as 
 

         , , cos sin 1
3

i x ct
1 3 2 i i 3 i i 3

i 1

u u A m x B m x e  


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
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 Similarly, Eq.(5.3) leads to the following solution for displacement components of the inviscid liquid 
layer of the form 
 

          , cos sin , 1
1 3

i x cto o
4 4 3 4 4 3 4u u A m x B m x 1 r e                                   (5.6) 
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6. Derivation of secular equation 
 
 Substituting the values of ,1 3u u  and 2  from Eq.(5.1) in the boundary conditions (4.1)-(4.5), and 
equating the determinant of coefficients of Ai and Bi i=1, 2, 3, 4 of the resulting equations to zero, we obtain 
an equation for the frequency of the present system. Thus, the frequency equation, after applying lengthy 
algebraic reductions and manipulations of the determinant leads to the following secular equation 
 

  
 * * *

* *
,

22 2 2 2
55 5 4 o 42

2 2 2 2
o 4 1

A b a a b
c

b b

   


 
                              (6.1) 

 
where 
 

   * *, , , , ,
2i i

i 1 i 2 i i 2 i
4

m r
a d i c d i r m d 1 s i 1 2 3

d


                    * ,o

4 4
55

a i r
A


   

 

  * ,o
5 4

55

a i m
A


           o

55

i
A


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   (6.2) 

     * sin cos ,5 4 4 4 4b i r m H m m H                    cosi i 3c m x  ,  

 

  
     
     
* * * * * * * * * * * *

* * * * * *
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a

m s r c r c m s r c r c m s r c r c
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

    
            

 
6.1. Specific loss 
 
 The specific loss is the ratio of energy ( )W  dissipated in taking a specimen through a stress cycle 

to the elastic energy ( )W  stored in the specimen when the strain is maximum. Kolsky (1963) shows that the 

specific loss  W W  is 4  times the absolute value of the ratio of the imaginary part of the wave number 

to the real part of the wave number, i.e. 
 

                                   

Im( )

Re( )

W k
4

W k


  .

                                                                          
  
 He noted that the specific loss is the most direct method of defining internal friction for a material.

  
6.2. Relative frequency shift 
 
 The relative frequency shift is defined by the relation as given below  
 

  

( ) ( )

( )
L 0

RFS
0

  



 

 
where  L  , ω(0) are the frequencies in the presence and absence of fluid loading, respectively. 
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6.3. Particular case: 
 
Rayleigh wave equation 
 
 In this case, the boundary conditions reduced to  
 
  , ,33 31 32t 0 t 0 m 0          at       3x 0 .               (6.3) 
 
      Substituting the values of stress components from Eqs (3.7) and (3.8) in boundary condition (6.3), we get 
 

  * *,
3 3

i i i i
i 1 i 1

A a 0 A c 0
 

                                                                                   (6.4) 

 

where *
ia  and *

ic are the same as defined above in Eqs (6.2). 

 The three boundary conditions given by Eqs (6.3) are satisfied simultaneously if the determinant of 
the coefficients of iA  i=1, 2, 3, vanishes in Eqs (6.4). So we obtain the frequency equation for the Rayleigh 

waves in the micropolar transversely isotropic medium of the form 
 

  
2

2
2
3

b 1
c

m 1





      where         * * * * * * * *

1 1 2 3 3 2 2 2 3 1 1 3b m s a c a c m s a c a c       .     (6.5) 

 
7. Numerical results and discussion 
 
 In order to illustrate theoretical results obtained in the preceding sections, we now present some 
numerical results taking 
 

  . , . , . ,10 2 10 2 10 2
11 33 55A 13 8 10 Nm A 14 43 10 Nm A 3 7 10 Nm         

 

  . ,10 2
66A 4 2 10 Nm         . , . ,10 2 10 2

13 56A 8 85 10 Nm A 2 977 10 Nm      
 

  . , . .9 9
77 66B 3 71 10 N B 3 9 10 N     

 
 For a comparison with a micropolar isotropic solid, following Gauthier (1982), we take the following 
values of the relevant parameters for the case of an aluminium epoxy composite as, 
 

       . , . , . ,3 3 9 2 10 22 19 10 Kgm 7 59 10 Nm 1 89 10 Nm            
 

  . ,9 2K 1 49 10 Nm        . , . .9 2 22 63 10 N j 0 196 10 m      
 
 The non-dimensional phase velocity, attenuation coefficient, specific loss and relative frequency 
shift (RFS) were computed and presented graphically (Figs 1-4) for various values of the non-dimensional 
wave number to compare the results for the cases of the micropolar transversely isotropic solid (MTIS), 
micropolar isotropic solid (MIS) and for two different values of thickness H=.01 and H=1 of the inviscid 
liquid layer. In all the figures, the solid curves represent the variations corresponding to the micropolar 
transversely isotropic solid (MTIS), while the broken curves represent the variations corresponding to the 
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micropolar isotropic solid (MIS). Also, the curves without a center symbol correspond to the variation when 
H=.01, whereas the curves with the center symbol (-O-O-) correspond to the variation when H=1. Figures 5-
7 represent, respectively, the variation of phase velocity, attenuation coefficient and specific loss with respect 
to the wave number for the solid half-space(in the absence of the liquid layer) to compare the results for 
different cases MTIS and MIS. The plots of amplitudes of normal displacement, tangential displacement and 
microrotation are shown in Figs 8-10. In these figures, solid line represents the variations for MTIS, while 
broken lines represent the variations for MIS.  
 It is shown in Fig.1 that the value of phase velocity at H=.01, initially decreases within the interval 
(0, 1.5) and then increases slowly to attain a constant value. However, for H=1, it oscillates with an 
oscillating amplitude to attain a constant value at the end, in both the cases of MTIS and MIS. 
 

       
 

Fig.1. Variation of phase velocity with wave number.    Fig.2. Variation of attenuation coefficient with wave number. 
 

     
 
Fig.3. Variation of specific loss with wave number.      Fig.4. Variation of relative frequency shift with wave number. 
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 The variation of the attenuation coefficient and specific loss with respect to the wave number is 
indicated in Figs 2 and 3, respectively. It is seen from these figures that for H=.01, and for both the cases of 
MTIS and MIS, the value of the attenuation coefficient and specific loss initially oscillates, then increases to 
become constant, while for H=1, their values oscillate with varying amplitude. It is also observed that the 
values of phase velocity, attenuation coefficient and specific loss are not much affected by anisotropy, but an 
appreciable effect of thickness of the liquid layer is observed. It follows from Fig.4 that the value of relative 
frequency shift initially appears to be constant and then oscillates to become a constant for MTIS, while for 
MIS its value is initially constant and shows a peak value when H=.01, to become constant at the end. 
 

  
 

Fig.5. Variation of phase velocity with wave number.    Fig.6. Variation of attenuation coefficient with wave number. 
 

 
 

Fig.7. Variation of specific loss with wave number.   Fig.8. Variation of amplitude of tangential displacement  
                                                                                                with wave number. 



Surface wave characteristics in a micropolar transversely … 59 

 

 It can be deduced from Fig.5 that the value of phase velocity for MTIS shows a large hump within 
the interval (0, 2), and then becomes constant, while for MIS, its value starts with a sharp decrease and tends 
to attain a constant value afterwards. The value of the attenuation coefficient for the case of MTIS oscillates 
initially and then decreases in the end, while the reverse behavior is observed for MIS, as depicted in Fig.6. 
Figure 7 shows the behavior of the specific loss with the wave number. It is shown that the value of the specific 
loss initially oscillates and then decreases to attain a constant value for both the cases of MTIS and MIS. 
 Figures 8-10 indicate the trend of variations of amplitudes of normal displacement, tangential 
displacement and microrotation with respect to the wave number. 
 It is noticed from Figs 8 that the amplitude of normal displacement initially decreases and then 
shows a peak value within the interval (1, 3) and then tends to attain a constant value, as far as the case of 
MTIS is concerned. However, for MIS, its value initially increases, and then sharply decreases to attain a 
constant value. The amplitude of oscillations for MTIS is higher as compared to this of MIS. From Fig.9, it 
can be seen that the value of amplitude of tangential displacement starts with a decrease up to the value 5 of 
the wave number and then sharply increases to become constant. A similar behavior is observed for the case 
of MIS. Also, it follows from Fig.10 that the value of amplitude of microrotation for both the cases of MTIS 
and MIS shows a sharp increase within the interval (.25, 1.5) and then attains a constant value. 
 

  
 
            Fig.9. Variation of amplitude of normal                    Fig.10. Variation of amplitude of microrotation 
                       displacement with wave number.                                  with wave number. 
 
8. Conclusions 
 
 The propagation of waves for a micropolar transversely isotropic solid half space underlying the 
layer of an inviscid liquid is investigated. A significant effect of fluid loading of varying thickness is 
observed on the phase velocity, attenuation coefficient and specific loss. It is concluded that their values, 
initially oscillate and then attain a constant value for thickness H=0.01, while for H=1, the values oscillate 
with large amplitudes. In the case of the solid half-space, phase velocity and specific loss attain quite large 
values at vanishing wave number, which sharply flatten out to become steady with increasing wave number. 
However, the value of attenuation coefficient varies arbitrarily for both the cases of MTIS and MIS. It is also 
shown in the figures that the values of amplitudes of displacements and microrotation get increased with an 
increase in anisotropy. 
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Nomenclature 
 
 *c  – specific heat at constant strain 
 j – microinertia 
 ijm  – components of couple stress 

 ijt  – components of stress 

 iu  – components of displacement 

 ij  
– Kronecker delta 

  0  – Lame’s constant 

 i  – components of microrotation 

   – density 

 0  – density of the fluid  

   – microrotation vector 
 

, ,ijkl ijkl ijklA G B are characteristic constants of the material following the symmetry properties given by Eringen (1999). 
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