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In this paper, we examine the zero-fourth cumulant approximation that was applied to fluctuating velocity 
components of homogeneous and isotropic turbulence by M.D. Millionschikov. Since the publication of the 
remarkable paper of Millionschikov, many authors have applied this hypothesis to solve the closure problem of 
turbulence. We discuss here various studies by the other authors on the developments of this hypothesis and their 
applications to the incompressible velocity temperature, hydrodynamic and magnetohydrodynamic fluctuating 
pressure fields and the general magnetohydrodynamic turbulence field. Lastly, we discuss broadly the 
computational difficulties that arise in turbulence problems and their possible refinements. We include also some 
enlightments of the process of future work that could be undertaken in this field of research. 
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1. Introduction 
 
 The inherent difficulty with the closure problem of turbulence is well known. In tackling this 
problem, generally some physically based hypotheses are often constructed. Such a hypothesis was first 
forwarded by Chow (1940) and Millionschikov (1941) in which an assumption was made that the fourth 
order velocity correlation is related to the second order correlation in the same way as for a normal joint 
probability distribution of the velocity. A final version of this statistical hypothesis is named after M.D. 
Millionschikov. Uberoi (1953) conducted extensive measurements for some cases and showed that the 
discrepancy between the measured fourth order moments and the prediction deduced from Millionschikov's 
quasi-normality hypothesis are found to lie within the limits of experimental errors. Ogura (1963) carried out 
numerical computations of the turbulence energy spectrum  ,E t  and showed that it becomes negative 

over a finite wave number range when the Reynolds number becomes sufficiently large. Mirable (1969) 
pointed out that the negative energy observed by Ogura (1963) is due to the assumption that at the initial 
time t=0 the third order moment of the velocity field is identically zero. 
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 Millionschikov (1941) proposed for the decay of isotropic turbulence in its final stage that 
probability distributions of the velocities at two different points but at one and the same instant of time, 
are approximately in normal distribution. In effect, a relation between the fourth and second order 
moments is established but with their order moments differing from zero. Uberoi (1953) verified this 
hypothesis experimentally, in particular some of its essential consequences. It is known that triple 
correlation functions do not vanish in homogeneous turbulence. A theory however, is expected to be 
established without the vanishing of the third order correlations. Many scientists worked on the 
applicability of Millionschikov’s hypothesis to more general cases of homogenous turbulence. Panchev 
(1971) reported that Millionschikov’s hypothesis may be extended further to the cases wherein quadruple 
moments are formed for one and the same instant of time but for more than two points. Ogura (1963) 
discovered that the kinetic energy spectrum  ,E t  becomes negative over a finite wave number range if 

the Reynolds number is sufficiently large. 
 The quasi-normality hypothesis of Millionschikov in reference to four points, may be read as 

i j k l i j k l i k j l i l j ku u u u u u u u u u u u u u u u              . Proudman and Reid (1954) carried out investigations of the 

dynamic behavior of homogenous turbulence in which the joint probability distribution of fluctuations 
velocity components at three points is approximately normal. They showed that Loitsiansky’s integral is 
not invariant of the motion and the first time derivative of the triple correlation function, say  K r  is 

proportioned to for large values of .r  In this approach, all velocity cumulants are exponentially small for 
large separations, which are local in their effect but they have values determined by the whole velocity 
field.  
 In order to remove the inconsistency of Proudman and Reid’s approach, Batchelor and Proudman 
(1956) assumed essential kinds of asymptotic forms of velocity cumulants. 
 More specifically, according to them it is important to understand that the effect of pressure forces is 
subsequently to develop asymptotic forms that are integral power laws. They showed also that the velocity 

covariance i ju u  reduces to the order of 5r  when separation is large. 

 Mirabel (1969) pointed out that the negative energy, obtained by Ogura (1969) is the outcome of the 
assumption that at the initiation time t 0 , the third moment of the velocity field is identically zero. This 
implies that at the initial time there is no transfer of energy over the velocity spectrum. One obvious 
suggestion is that at the initial situation, the third order moment need not be taken identically zero, instead it 
should be modeled differently. For example, at the initial stage, the eddies may be considered as the shape of 
cylindrical vortices, which are isotropic in the 2-dimensional plane normal to the axis of the cylinder. Ghosh 
(1972) investigated the early-period decay process of a general type of turbulence using quasi-normality 
hypothesis which when simplified for the case of ordinary isotropic turbulence yielded well known decay 
equation due to Proudman and Reid (1954). Ghosh established two lemmas to derive the limiting forms of 
the spectrum tensors and of Millionschikov’s hypothesis when two or more points under reference coincide. 
These lemmas are used freely to derive Proudman-Reid style dynamical equations for the hydrodynamic 
velocity and temperature fields, hydromagnetic fields and relevant pressure-fluctuation fields, as arising in 
hydrodynamic and hydromagnetic turbulent flows. For convenience of the readers, we would briefly state the 
two lemmas here. 
 
Lemma I: This is concerned with the behavior of correlation tensors in the energy space when two or more 
points under reference coincide. 
 Let  , , ,i j t    and  , , , , ,i j t       be spectrum functions which correspond respectively to 

 , , ,i j i jF x x t u u     and  , , , , ,i j i jF x x x t u u u       , as constructed by the fluctuating velocity components 

in the turbulent medium. 
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 Now when the third point x  merges with the first point x, then we have the first lemma 
 

     , , , , ,i j ik jt d t                         (1.1) 

 
where   .     
 
Lemma II: It is concerned with Millionschikov’s quasi-normality hypothesis. We consider an additional 
fluctuation velocity component lu  at the point x , and the spectrum tensor  , , ,i j l t           which 

correspond to  , , , , , , ,i j l i j lF x x x x t u u u u         . 

 Now, when the fourth point x  coincides with the first point x , we derive the relation 
 

  
     
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  (1.2) 

 
 Now, if in addition to merging of the fourth point with the first point, the third point merges with the 
second point, the following relation may be derived 
 

  
     

       
, , ,

, , ,

, , , , , ,
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t t t

t t d d t t
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 

          

         

         

           
      (1.3) 

 
 In the next section, we would apply these lemmas to derive briefly the Proudman-Reid type decay 
equations for the velocity, temperature and hydromagnetic fields. 
 The relevant expressions for the fluctuation pressure fields under hydrodynamic and hydromagnetic 
conditions will also be stated for the sake of completeness.  
 
2. Applications of quasi-normality hypothesis 
 
a) Early-period decay process of turbulence 
 
 We state here briefly the derivation of the Proudman-Reid equation for the turbulence velocity field 
following Ghosh (1972). Ghosh (1972) carried out long calculations, constructing the spectral equations 
corresponding to the two-point and three-point velocity correlation functions and utilizing the lemmas 
concerning Millionschikov’s quasi-normality hypothesis and derived the guiding equation for the early 
period decay process of turbulence as  
 

       , , , , , , , .
2

i j 1 22
t I t I t

t

     


            (2.1) 

 
 The expressions for  , ,1I t   and  , ,2I t   are studied well in the work of Ghosh (1972). 

Ghosh (1972) showed that Eq.(2.1) is valid for the general type of turbulence stated above and represents the 
early-period decay process. 
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 Further, Ghosh showed that for the case of homogeneous turbulence Eq.(2.1) reduces to 
 

     , , , , , .
2

i j 12
t I t

t

   


          (2.2) 

 
 Now, Eq.(2.2) is implied under the assumption of homogeneity and isotropy, i.e., in view of the form 
for the second rank spectrum tensor  , , ,s q t    as  

 

     
,

,
, , ,s q

s q sq2 2

F t
t

4

  
     

  
        (2.3) 

 
to the well known Proudman-Reid decay equation 
 

     , , ,

2
2

2 2
2

0 0

4
2 F t d F t d

3t

  
       

   
        (2.4) 

 

putting the form for 2 , the mean square variation in one component of vorticity in the case of 
homogeneous and isotropic turbulence, as 
 

   , ,2 2

0

3
F t d

2



           (2.5) 

 
we may write Eq.(2.4) in the final form 
 

    .
2 2

2 2
2

d

d t
         (2.6) 

 
b) Decay process of turbulence at large Reynolds and Peclet numbers 
 
 Mazumdar (1976) studied the fluctuating temperature field considered to be superimposed on a 
general field of eddy turbulence by employing the quasi-normality hypothesis. In this investigation 
Mazumdar approached phenomenologically that the region under consideration is such that the variations of 
the mean temperature and mean velocity may be neglected because the transportation of thermal energy from 
place to place is very rapid. Mazumdar followed a similar procedure as in section a) above and showed that 
the temperature energy spectrum  ,E t   is governed by the decay equation under the condition of 

homogeneity and isotropy by the equation 
 

       , , , .
2

2 2 2
2

0 0 0

4
E t d E t d F t d

3t

  

 


          
         (2.7) 
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 The associated velocity field is governed by the Proudman-Reid Eq.(2.4). In obtaining these two 
decay equations quasi-normality hypothesis has been used freely. 

 It is to be noted that  ,E t   corresponds to the correlation function   , , ,F x x t    . 

 
c)  Mazumdar (2010) derived the Proudman-Reid type decay equation for the magneto hydro-dynamic 

(MHD) turbulence when both the eddy Reynolds number and the magnetic Reynolds number are very 
large, as 

 

  

       

   

, , , ,

, , ,

2
2

2 2 4
2

0 0 0 0

4

0 0

4 8
2 F t d F t d G t d G t d

3 3t

2
F t d G t d

3

   

 

 
             

   

     

   

 
   (2.8) 
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 The set of Eqs (2.8) and (2.9) has been obtained under the assumption of homogeneity and 
isotropy. 
 
d)  Mazumdar (1979, 1984) applied Millionschikov’s quasi-normality hypothesis, respectively, to the fields 

of hydro-dynamic and hydro magnetic turbulence and derived the following expressions for the spectra of 
respective pressure fluctuations, as 

 

       grad , , ,
2 2

0 0

p p F t F t d d


                 (2.10) 

 
and 
 

            grad , , , ,
2
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where, 
 

          ln .
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 It is to be noted that the expression for  grad
2

p , given in Eq.(2.10) is due to Heisenberg (1948),   

is the total pressure, given by 
2p 1

h
2

 


, where h is the magnetic field component,  ,G t  is the 

magnetic energy spectrum. 
 
 The solution of Proudman – Reid Eq.(2.6) is given by Monin and Yaglom (1975) 
 

       ; , ,

1
2 16

2 2 23 2
1 1 1

2
2 P x 0 1 x t t

3
          (2.13) 

 

where 2
1  and 1t  are integration constants. ( ; , )P x 0 1  is the elliptic Weierstrass function. 

 For solving Eq.(2.7), it is put in the form 
 

  
   grad

grad .
22

22
2

d 2

3dt


        (2.14) 

 
 Solution of Eq.(2.14) is given by Monin and Yaglom (1975) 
 

         grad ,

1
162 2 2 2

0 0 0
2

P x x t t
3

         (2.15) 

 
where  ; ,P x 0 1  is the elliptic Weierstrass function. 

2
0 , 2

0  and 0t  are integration constants.  
 Calculations for variables in similar other problems may essentially be done in the same 
manner. 
 
3. Refinement of Millionschikov’s quasi-normality hypothesis 
 
 The applications of Millionschikov’s quasi-normality hypothesis are found to fail in some cases. For 
example, in the case of convective boundary layer turbulence (Gryanik et al., 2005) found that the 
probability density functions of temperature and vertical velocity fluctuations are skewed. 
 They suggested closures for fourth-order moments which take skewness into account and 
obtained a very good agreement with the measured data. Losch (2004) devised parametrizations of 
fourth-order moments according to a universal model presented by Gryanik et al. (2005) and found them 
to be more accurate than their corresponding Gaussian parametrizations which are based on 
Millionschikov’s hypothesis. The universal model is marginally improved by fitting the model 
parameters to the data.  
 For uniform homogeneous isotropic turbulence the system of moment equations, using 
Millionschikov’s hypothesis, may be written in the form, 
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and 
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 (3.1) 

 
where v is the kinematic viscosity, 
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          

 

 
 The expressions for the energy spectrum  E   and the spectral form of the third-order velocity-field 

are written as 
 

    exp ,
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4
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E 4
a a
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and 
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    (3.3) 

 
 The spectral tensor  ijlF κ,κ  which is based on the assumption of the scalar function  l ljji F    , 

has the following form in the present case 
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  (3.4) 

 
 Mirabel (1969) solved numerically the equation for the kinetic energy spectrum (3.1) based on a 
finite difference method with the initial conditions (3.3) and (3.4). 
 
 Mirabel (1969) described the evolution of the energy spectrum for initial zero (Ogura, 1963) and 
non-zero third moments in his paper. Such descriptions were found reasonable at the initial stage but after 
some time a contradiction was found to arise. On the basis of the above analysis, we may arrive at the 
following conclusions. 
 
Conclusions 
 
i)  Millionschikov’s quasi-normality hypothesis is considered to be very useful for closure of homogeneous 

and isotropic turbulence as such a hypothesis has been proved to be valid within the limits of 
experimental errors. 

ii) To gain more insight into the closure problems of turbulence, data from recent and advanced level 
measurements are to be brought into account in developing appropriate models. 

iii) As and when necessary, modification of this hypothesis is welcome, as Ogura (1963) has pointed 
tentatively that the errors that arise from finite difference approximations in numerical integration of the 
main equation of turbulence are not responsible for the generation of the negative energy spectrum but 
are the consequences of the quasi-normality hypothesis itself. 

iv) Third-order moments of the velocity field should not be assumed zero and it should be taken into 
account into the calculation even at the initial evolution of spectral energy of turbulence. 

v)  It is to be noted that the measured values of fourth-order mixed velocity-temperature moments in the 
atmospheric surface layer agree well with the quasi-gaussian assumption. Further, Schwarz 
inequalities, commonly used in the clipping approximation in turbulence modeling, are found to 
provide counts for third-order moments of  ,   that are too conservative. These types of approaches 
are to be encouraged. 

 
Nomenclature 
 
  E    – energy spectrum 

  ,E t    – isotropic temperature energy spectrum function 

  ,F t   – isotropic energy spectrum function 

  κ,κijlF    – spectral tensor 

  ,G t   – magnetic energy spectrum 

 h   – magnetic field component 
 ( ; , )P x 0 1   – eliptic Weierstrass function 
 p   – fluctuating pressure components 
 iu   – turbulent component of the velocity field 

 i ju u  , , ,i jF x x t   – two-points correlation function of turbulent velocity components 

 i j ku u u   , , , , ,i jF x x x t     – three-points correlation function of turbulent velocity components 
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i j k lu u u u    , , , , , , ,i j lF x x x x t      – four-points correlation function of turbulent velocity components 

 v  – kinematic viscosity 
    – density 

  , , ,i j t     – spectrum function which corresponds to  , , ,i jF x x t  

  , , , , ,i j t        – spectrum function which corresponds to  , , , , ,i jF x x x t    

  , , , , , ,i j l t          – spectrum function which corresponds to  , , , , , , ,i j lF x x x x t     

 2   – mean square value of velocity component 
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