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The present paper is devoted to the study of phase velocity and attenuation of longitudinal shear vibrations of 
hollow poroelastic circular cylinders in the presence of dissipation. The explicit expressions for phase velocity 
and attenuation of longitudinal shear vibrations are derived. The frequency equation of longitudinal shear 
vibrations and modes obtained in a previous paper are used to compute the phase velocity and attenuation for 
different dissipations for thin and thick poroelastic cylindrical shells and poroelastic solid cylinder. The physical 
parameters of sandstone saturated with kerosene and sandstone saturated with water are used for the purpose of 
computation. It is found that the phase velocity is linear beyond certain frequency. Phase velocity is smaller for a 
typical anti-symmetric mode compared to the flexural mode. It is greater for the second mode than that of the first 
mode. Also the phase velocity is larger for a thin poroelastic cylindrical shell than that of a thick poroelastic 
cylindrical shell. The same is true for attenuation also. Attenuation is very high for the considered dissipations 
and it increases with the increase in dissipation.  
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1. Introduction 

 
 In a previous paper (Tajuddin and Shah, 2010), the frequency equation of longitudinal shear 
vibrations of a hollow poroelastic cylinder of infinite extent was developed that governs the relationship 
between frequency and the ratio of thickness of the hollow poroelastic cylinder to the inner radius. This 
frequency equation of longitudinal shear vibrations was obtained in the framework of Biot’s (1956) theory of 
wave propagation in a porous elastic solid under stress free boundary conditions. It was shown that the liquid 
pressure developed in the solid liquid aggregate is zero and hence the frequency equation of longitudinal 
shear vibrations is same for pervious and impervious surfaces. This frequency equation was non-
dimensionalized and frequency was obtained for different values of the ratio of thickness to the inner radius 
and it was presented in the form of graphs. It was found that these waves are less dispersive. For different 
values of the radius ratio and different values of angular wavenumber, first five modes were obtained and 
presented in the form of Tab.1 (Tajuddin and Ahmed Shah, 2010). Also, it was found that the frequency is 
almost same for Material-I and Material-II each for different values of angular wavenumber, that is, n=0, 1, 
2. Tajuddin and Shah (2006; 2007) also studied the circumferential and torsional vibrations of hollow 
poroelastic cylinders of infinite extent in the presence of dissipation. Shah (2008; 2011) studied the problems 
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of wave propagation in fluid-filled cylindrical and spherical shells in the absence of dissipation. Recently, 
Shanker et al. (2013) studied the vibrations of composite poroelastic spheres.  
 The present paper describes the results of a study prompted by the earlier papers. By using the above 
said modes (Tab.1, Tajuddin and Shah (2010)), phase velocity and attenuation of longitudinal shear 
vibrations are obtained for different dissipations and different angular wavenumber for the first two modes 
for thin poroelastic cylindrical shell, thick shell and poroelastic solid cylinder. The expressions for phase 
velocity and attenuation are derived involving the dissipation coefficient. 
 
2. Study of the frequency equation 

 
 A hollow poroelastic circular cylinder of infinite extent is referred to cylindrical polar coordinates. 
Inner and outer radii of the cylinder are r1 and r2 respectively so that the thickness of the cylinder is 

 2 1h r r 0     . The axis of the cylinder lies along the z-axis. The outer and inner surfaces of the hollow 

cylinder are assumed to be stress free. The frequency equation of longitudinal shear vibrations, independent 
of the nature of the surface, which was developed in a previous paper (Tajuddin and Ahmed Shah, 2010), is 
repeated here. This frequency equation is 
 
         n 3 1 n 3 2 n 3 2 n 3 1J r Y r J r Y r 0                          (2.1) 

 
where Jn and Yn are Bessel functions of first and second kind, respectively, each of order n and a ‘dash’ over 
Jn or Yn represents differentiation with respect to r. Also ξ3  is defined as  
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 In Eq.(2.2), ω  is the circular frequency and V3 is the shear wave velocity given by the equation  
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where N is the shear modulus of the poroelastic solid, and  
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 In Eq.(2.4), b is dissipation coefficient, ( , , )ij i j 1 2   are mass coefficients following Biot (1956) 

and i is complex unity or .2i 1   
 By substituting  
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in Eq.(2.1), it is reduced to  
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where the roots of Eq.(2.6) are Rm which is the m-th mode for different values of g=r2/r1 and different values 
of n. These values of Rm are given in Tab.1 of the previous paper (Tajuddin and Ahmed Shah, 2010). 
 Using Eqs (2.2)-(2.3) in Eq.(2.5), it is simplified to  
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 Now we introduce the following non-dimensional parameters for further simplification 
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where b1,  are non-dimensional dissipation, frequency respectively, 2
0

N
C 


 is the reference velocity and 

=11+212+22. 
 Equation (2.7) is written as  
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where K11, K12 and K22 are defined in Eqs (2.4). 

 But it is seen that 
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where rE  and iE  are 
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 A poroelastic medium is dissipative in nature and thus the axial wavenumber k is complex. The 
waves generated obey the diffusion type process and therefore get attenuated. Let n=kh and k=kr+iki, where 
kr is real and ki is the imaginary part of the wavenumber k. Hence the phase velocity Cp and attenuation xh as 
in Biot (1956) are 
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 By substituting n=kh in Eq.(2.10) it reduces to 
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 Now by substituting k=kr+iki, in Eq.(2.13) and after necessary simplifications, we can separate the 
real and imaginary parts of the wavenumber as  
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where the expressions for B1 and B2 are 
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 In Eq.(2.15), Er and Ei are defined in Eq.(2.11). 

 Thus the non-dimensional phase velocity p

0
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C
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h
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where B1 and B2 are defined in Eq.(2.15). 
 
3. Results and discussion 
 
 Two types of poroelastic materials are considered to carry out the computational work, one is 
sandstone saturated with kerosene, say Material-I (Fatt, 1959), the other one is sandstone saturated with 
water, say Material-II (Yew and Jogi, 1976), whose non-dimensional physical parameters are given in Tab.1 
 
Table 1. 
 

Material/parameter a4 z m11 m12 m22 

Material-I 0.234 3.851 0.901 -0.001 0.101 
Material-II 0.412 2.129 0.877 0 0.123 

 
 For a given poroelastic material, the non-dimensional phase velocity and attenuation (damping 
coefficient) are computed as a function of frequency for the first two modes. The different dissipation 
parameters (b1) chosen are 0.01, 0.1 and 1. Three values of g have been considered for the purpose of 
computation. These values are g=1.034, 3 and when g is very large (i.e., g  ). These three cases 
physically represent the results related to the poroelastic thin shell, thick shell, poroelastic solid cylinder, 
respectively. Different angular numbers considered for computation are n=1 and n=2 which respectively 
represent the flexural mode and typical anti-symmetric mode. Phase velocity of a thin poroelastic circular 
cylindrical shell Material-I is presented in Fig.1 for the considered dissipations, angular wave numbers and 
the first two modes. It is seen from Fig.1 that the phase velocity increases till the frequency is 0.1 and then it 
remains almost constant. In general, phase velocity is high for lower dissipation. Phase velocity is high for 
second mode that that of the first mode. Also, phase velocity for n=1 is higher than that of n=2. Phase 
velocity of a thin poroelastic circular cylindrical shell in case of Material-II is presented in Fig.7. The 
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variation of phase velocity is similar as discussed in Fig.1. Also, phase velocity is almost same for both the 
materials. Thus it is clear that the mass-coupling parameter has no significant effect on phase velocity in the 
case of a thin poroelastic cylindrical shell. Attenuation of a thin poroelastic cylindrical shell for n=1 and 2 is 
presented in Fig.2 for Material-I for the first mode. It is seen that as dissipation increases, attenuation 
increases. There is an increase in attenuation when the frequency is in [0 0.1] for all dissipations and then 
there is a rapid decrease. Attenuation for n=1 is higher than that for n=2. The same trend is observed in 
variation of attenuation of the thin poroelastic cylindrical shell for the second mode for Material-I. Moreover, 
attenuation is higher for second mode than that of the first mode for all the considered dissipations. The 
phase velocity of a thick poroelastic cylindrical shell for Material-I is presented in Fig.3 for the considered 
dissipations and for n=1,2. The variation of phase velocity is similar as that discussed in Fig.1. It is observed 
that the phase velocity for a thick shell is less than that for a thin shell. The phase velocity of a poroelastic 
solid cylinder for Material-I is presented in Fig.5 for the considered dissipations and for n=1,2. Variation of 
phase velocity is similar to that discussed in Fig.1. Here we can say that the increase in thickness of the 
hollow poroelastic cylindrical shell has no effect on phase velocity since phase velocity is high for a thin 
shell and it is smallest for a thick shell while the phase velocity of a solid cylinder is higher than that of the 
phase velocity of a thick shell. Exactly the same trend is observed in variation of phase velocity in case of 
Material-II and moreover the phase velocity for Material-II is almost same as that of Material-I. Attenuation 
of a thick poroelastic shell is presented in Fig.4 for Material-I for n=1, 2 and for the first mode. Variation of 
attenuation is similar as discussed in Fig.2 and it is higher for a thin shell than that for a thick shell. 
Similarly, attenuation of a poroelastic solid cylinder for Material-I and for the first mode with considered 
dissipations is presented in Fig.6. Again the variation of attenuation is same as that discussed in Fig.2. 
Attenuation of a solid cylinder is larger than that of attenuation of a thick shell but it is smaller than that of 
attenuation of a thin poroelastic cylindrical shell. Attenuation for the second mode is higher than that of the 
first mode. Same trend is observed in variation of attenuation in case of Material-II. Thus the mass-coupling 
parameter has no significant effect on attenuation.  
 

 
 
Fig.1.  Phase velocity as a function of frequency (Mat-I, Thin-shell). Longitudinal shear vibrations of 

hollow poroelastic cylinders. 
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Fig.2.  Attenuation as a function of frequency (Mat-I, Thin-shell, First mode). Longitudinal shear vibrations 
of hollow poroelastic cylinders. 

 

 
 

Fig.3.  Phase velocity as a function of frequency (Mat-I, Thin-shell). Longitudinal Shear vibrations of 
hollow poroelastic cylinders. 
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Fig.4.  Attenuation as a function of frequency (Mat-I, Thin-shell, First mode). Longitudinal shear vibrations 

of hollow poroelastic cylinders. 
 

 
 

Fig.5.  Phase velocity as a function of frequency (Mat-I, Solid cylinder). Longitudinal shear vibrations of 
hollow poroelastic cylinder. 
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Fig.6.  Attenuation as a function of frequency (Mat-I, Solid cylinder, First mode). Longitudinal shear 
vibrations of hollow poroelastic cylinders. 

 

 
 

Fig.7.  Phase velocity as a function of frequency (Mat-II, Thin-shell). Longitudinal shear vibrations of 
hollow poroelastic cylinders. 
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4. Concluding remarks 
 
(i) Phase velocity and attenuation for flexural mode is higher than that of typical anti symmetric mode. 
(ii) With the increase in dissipation, there is no change in phase velocity 
(iii) With the increase in dissipation, there is an increase in attenuation. 
(iv) Phase velocity and attenuation is higher for the second mode that that of the first mode. 
(v) The phase velocity and attenuation is highest for a thin poroelastic cylindrical shell and these are 

lowest for a thick poroelastic shell.  
(vi) Mass-coupling parameter has no significant effect on phase velocity and attenuation. 
 

Nomenclature 
 

 a4 – non-dimensional poroelastic constant 
 b – dissipation 
 b1 – non-dimensional dissipation 
 Cp – phase velocity 
 C0 – reference velocity 
 g – ration of outer to inner radius 
 h – thickness of the hollow poroelastic cylinder 
 ,n nJ Y  – Bessel functions of first and second kind of order n 

 k – axial wavenumber 
 kr, ki – real and imaginary parts of wavenumber 

,  ,  11 12 22m m m  – non-dimensional mass coefficients 

 N – shear modulus  
 n – angular wavenumber 
 Rm – m-th mode of vibration 
  , θ, r z  – cylindrical polar coordinates 

 , 2 1r r  – outer radius, inner radius respectively 

 V3 – shear wave velocity 
 xh – attenuation 
 ρ ,  ρ ,  ρ11 12 22  – mass coefficients 

 Ω  – non-dimensional frequency 
 ω  – circular frequency 
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